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ABSTRACT

Numerical calculations for problems of ductile crack growth carried out by the
author are reviewed. These problems involve crack tip blunting in thick and
thin sheets, the growth of voids near blunting crack tips and the modelling of
void-crack coalescence. The most recent calculations have been carried out in
three-dimensions and substantial detail is revealed.
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INTRODUCTION

When an elastic-plastic body with a sharp crack is subjected to a monotonically
increasing load of model type (i.e., tensile opening), blunting of the tip by
intense straining will occur until some mechanism of crack extension takes
over. The stress and deformation fields near a blunt crack are quite different
from those predicted by the analysis of a mathematically sharp crack. If finite
geometry changes (i.e., blunting) are ignored, the stress and deformation fields
near the tip of a tensile, mathematically sharp crack, in a power-law hardening
material are governed by the one parameter singularity derived by Hutchinson
(1968a) and Rice and Rosengren (1968) (HRR fields). The HRR field shows that
the most extensive straining appears above and below the crack tip rather than
directly ahead of it; large stresses are also predicted ahead of the crack. However,
if crack tip blunting is taken into account, a completely different picture
emerges. As was first shown by Rice and Johnson (1970), intense strains now
appear directly ahead of the crack over a distance comparable in size to the crack
tip opening displacement (COD); also, the stress boundary conditions on the
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deformed crack surface limit the hydrostatic stress elevation ahead of the crack
and result in lower stresses ahead of it.

The predominant ductile fracture mechanism is void nucleation, growth and
coalescence. Since hole growth itself is a finite strain process and the size of the
fracture process zone is comparable to the COD, it becomes clear that in relating
the results of continuum anclyses to microstructural fracture events one musl
take crack tip blunting into account.

Detailed finite element analyses (McMeeking, 1977a) show that the stresses and
strains near a crack tip at loads less than the fracture load are well above those
which would have caused failure in a macroscopically homogeneous
deformation field. As discussed by Rice (1976), this suggests that in relating
microstructure to the conditions for fracture initiation, it is important not only
that some critical stress or strzin be achieved ahead of the crack tip, but also that
they be achieved over a microstructurally significant size scale for the fracture
mechanism at hand. Rice (1976) also mentions that the need for a relation
between macroscopic toughness and microstructure is clear from dimensional
considerations alone, in that the critical fracture toughness (Kj¢) or the critical
crack tip opening displacement (bf) must depend not only on material
parameters which enter the constitutive law, like the yield stress and the elastic
moduli, and critical stress and strain values, but also on some characteristic
length of the material, such as grain size or inclusion size and spacing.

In the following, we first discuss crack tip blunting in some detail; then, we
present results for the near crack type growth of voids nucleated at inclusions
and examine the effects of inclusion size and spacing on the conditions for
fracture initiation. This work includes some recently solved three-dimensional
problems.

CRACK TIP BLUNTING ANALYSIS

Rigid-Plastic Analysis

Rice and Johnson (1970) were the first to study crack tip blunting in detail. They
suggested that the blunting car take place by a general stretching of material on
the crack tip. Near tip rigid-plastic slip line solutions were taken as good
approximations to the behavior of elastic—plastic materials, when elastic strains
are neglected compared to plastic strains. They considered the cases of the
contained yielding of a plane strain, non-hardening specimen (CY specimen),
and the fully plastic yielding of a deeply cracked, double edge-notched, thick
panel of non-hardening material (DEN panel). One approach to both of these
problems is to view the crack tp as a point of singular shear strain, and the slip
line field of Fig. 1 arises in this case. In the DEN panel, Fig. 1 is the near tip
region of the Prandtl punch type plastic zone that arises for full scale yielding;
the CY specimen has this slip line field only in a near tip region that is small
compared to the plastic zone as discussed by Rice (1968). A straight slip line in
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Fig. 1. Near tip stresses and slip line field

Fig. 2  Slip line field around
smoothly blunted crack tip
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region C transmits a constant velocity parallel to itself and this velocity was
calculated for both the CY spedmen and the DEN panel.

Rice and Johnson (1970) noted that when the crack blunts, the fans of singular
shearing above and below the crack tip would become noncentered above and
below a region of intense stretching adjacent to the blunted crack tip as in Fig. 2.
When viewed on the size scale of the plastic zone, this whole region of intense
stretching still appears as a point, so the velocities in region C of Fig. 1 still serve
as approximations to the normal velocities on the outer slip lines of the
intensely stretched zone. They used these velocities as boundary conditions to

solve the slip line equations numerically for the velocities at D as functions of o
and B. They also showed that the position of the crack tip relative to the point

o =0, B = 0, can be worked out once the velocities on the crack tip are known.
Once the physical coordinates of the points on the blunt crack tip are known, the
physical coordinates throughout region D can be determined numerically.

Their results show that large sirains appear directly ahead of a crack tip when
finite geometry changes are considered, but only in a region adjacent to the
blunting tip. This means that in situations for which large strains are required
for fracture (e.g., ductile growth of microvoids nucleated at inclusions), the COD
at fracture (br) must be such that the large strain region D envelops characteristic
microstructural dimensions in the separation process. Their results also show
that with consideration of actual geometry changes at the crack tip, the
maximum stress achievable over any reasonable size scale of the material is
limited, contrary to the predictions of the HRR field. They also showed that the
shape of the blunt crack tip is given by

£y, 8) = r(y, 0 + £(y)5,

where r is the position vector of points on the tip, ¥ and &; are the tangent angle
and the notch opening, respectively (Fig. 2), f is a vector valued function of ,
and r(y, 0) is the position vecior before deformation. For an initially sharp

crack r(y,0) = 0,and

r(y, &) = £(y)5,

Equations (1) and (2) show that the shape of the tip of a notch can be obtained at
all times by adding the original notch shape to the steady-state shape of a sharp
crack blunted by the same loads. Thus, as the total notch opening grows several
times the original notch opening, the difference between the blunted notch
shape and the shape of the sharp crack blunted by the same loads become
negligible. Under small-scale yielding conditions, the steady-state shape of the
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blunted sharp crack arises because the COD is the only length of sig‘niﬁcance in
the near tip region and displacements and all other distances scale with it.

Llastic-Plastic Analysis

Based on the above results, McMeeking (1977a) used large deformation finite
elementary analysis to model the blunting of a sh.arp crack under s.m.all-scale
yielding plane strain conditions, even though the tl}_) actually had a finite rqot-
radius in the undeformed configuration. He considered both non-hardening
and hardening elastic—plastic materials. The constitutive lav'v h'e used represents
the Jo flow theory and accounts for rotation of the principal deformation
directions. The finite element formulation was based on the up_dated
Lagrangian method of McMeeking and Rice (1975) for large def0r11.1at101r;72§
elastic—plastic materials, modified according to Nagtegaal, Parl.<s and Rice (

to free the mesh of artificial constraints on the incompressible modes. The
small-scale yielding solution is achieved by applying displaf:ement boundary
conditions remote from the crack tip to impose an asymptotic dependence on
the mode I elastic crack tip singular stress field. More details are given
McMeeking (1977a) and will not be repeated here.

Figure 3 shows the true stress Ggg (see inset of Fig. 3) normalized by the true

tensile yield stress O, vs. the distance from the notch'tip in the ur}deforme.d
configuration for an elastic perfectly-plast.ic material. The dlstancle is
normalized by the current notch opening, which allows results from the later
increments of the finite element calculations to be plo‘tted. together. As the
notch tip is approached at a given angle to the c.rack line in the undeforme.d
configuration, the stress rises due to increasing strain. However, the hydrostatic
stress cannot be maintained on the blunted notch surface and as a result, there is

a maximum for Ogg, coinciding with a maximum for hydrostatig stres's, some
distance from the notch tip. Figure 3 also shows equivalent plast}c strain plots
from the later increments of the finite element solutions. Th‘e strains are clearly
small except very close to the blunted tip. Outside the near-tip region, thfe la}rgfer
plastic strains are on the lines at an angle to the crack l.me and'thlS.lS in
agreement with the HRR results. However, close to the tip, the situation is
reversed and the plastic strains are larger than 5.

For comparison, the stress and plastic strains ahead of the crack (6 = 0.) from ;ﬂe
slip line solution of Rice and Johnson (1970) have been. plgtted in Fig.3. The
agreement between the finite element results and the slip line results are qulctie
close as far as the position and magnitude of the stress maximum are concerned.

Similar finite element calculations for power-law hardening materials ;h_ow
that the magnitude of the stress at the maximum is higher and that .the position
of the stress maxima move closer to the notch tip. Another hardening effect is
an upturn in stress close to the notch surface, which arises from the elevation of
flow stress by the large plastic strains in this area. In faFt, w}}en. a sharp crack in a
power-law hardening material is blunted to a finite width, infinitely large stress
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on the notch surface will arise, but only over a distance small compared to the
blunted-crack width. This stress singularity arises because in the power-law
hardening model, infinite plastic strains produce infinite flow stresses, whereas
a saturation to a constant flow stress after large plastic strains is more physically
realistic. In addition, few cracks are likely to be atomistically sharp and the finite
radius at the tip of most real cracks will lead to only large but finite plastic
strains at the tip.

Additional results for the near tip stress and deformation fields as well as for the
shape of a blunting crack tip were obtained by Tvergaard and Needleman (1983).

Blunting of a Crack Tip Intoa Shape with Corners

In the last two sections, smoothly blunted crack tips were considered. However,
the shape of the blunted tip is not unique, at least within the rigid-plastic model
for non-hardening materials. The blunted tip shape may have two or more
sharp corners, or be smootily curved. McClintock (1971) has given slip line
fields that arise around crack tips that are blunt by localized shearing at corners
on the crack tip. The corners on the crack tip are connected by straight segments
of crack tip surface and McClintock has worked out slip line fields with two and
with three corners on the crack tip. McClintock (1971) has observed also the
opening of a macroscopic rotch by a mechanism of shearing at two corners,
while Clayton and Knott (1976) have observed localized shearing at many
corners on a macroscopic notch tip. Rawal and Gurland (1976) have observed
the smooth mechanism of blunting in the opening of prefatigued crack in
spheroidized steel. The type of blunting which arises in a specific case may
depend on considerations of strain hardening and stability. The tendency for
deformation to localize at, say, asperities on the tip surface may be important in
this respect. Apart from the shape, the main difference between the smoothly
blunted crack tip case and the case with the sharp corners is that the sharp
corners are the focus of fans with singular shear strain rates. It is these that
largely accommodate the crack tip opening by transporting material from the
interior to create new surface

McMeeking (1977b) studied in detail the blunting of a crack tip into a shape with
corners using the method of slip lines which were found numerically. The
crack tip shapes and slip lines for the case of blunting with two corners on the
tip and with three corners on the tip are shown in Figs. 4 and 5. McMeeking's
(1977b) results show that the stretches on the x-axis remain relatively small
compared to the larger values near the tip of a smoothly blunted crack.
However, at distances farther than one notch opening from the tip, a slightly
more severe strain state is achieved in the cases where the crack has blunted by
the sharp corner mechanism. In terms of a fracture process that occurs when a
critical strain is achieved over a critical length, the COD at fracture would be
slightly greater in the smoothly blunted case compared to the sharp-nosed case;
that is, if the x-axis strain is typical. The sharp-nosed case would show a slightly
larger COD at fracture compared to the flat-nosed case, at least based on crack
growth occurring on the x-axis.
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Following Rice and Johnson (1970), McMeeking (1977b) also obtained an
approximation for the near tip stresses for power-law hardening materials. His
resul‘ts show that the stresses for blunting with corners on the crack tip in the C\}
specimen would be slightly smaller than those in the smoothly blunted crack.
In terms of a fracture event controlled by a critical stress that must apply over a
Crlthé'll distance, specimens with smoothly blunted crack tips would appear to be
marginally less tough than those which have cracks blunted by the sharp corner
mechanism. P

Detailed finite element analyses of the near tip stress and deformation fields
were al§o carried out by Needleman and Tvergaard (1983). Following
McMee.kmg énd Parks (1979), they focused on the question of when the blunted
crack tip region is uniquely characterized by a single parameter such as Rice's
(1968) J-integral, or equivalently, on the minimum specimen size requirements
for valid J-tests. They carried out calculations for deeply cracked center-cracked
panel ((;CP) and single-edge crack bend (ECB) specimens. They based their
calculations on the phenomenological corner theory of plasticity, termed J
corner theory, proposed by Christoffersen and Hutchinson (1979). One
immediate consequence of the presence of a vertex on the yield surface is that
yield surface vertex effects permit shear band development at achievable strain
level_s in strain-hardening solids, whereas the classical smooth yield surface
elastlc-pl.astic work hardening solid is quite resistant to the localization of
deformatllon in a shear band Their results show that the highly localized
dfeformatlon accompanying shear banding leads also to near tip strain fields very
gll.ff.erent from that predicted by the classical smooth yield surface model. The
initially smooth notch tip of the ECB specimen was flattened out and shear
bands developed from the corners of this flattened region. Similar results were
found for the early deformation stages of the CCP specimen. As mentioned by
_Nge.dlf.eman and Tvergaard (1983), the flattening out of a curved surface at the
Initiation of shear band development has been encountered in previous
calculations and is associated with the attainment of a critical strain for a short-
wavelength surface instability at the free surface.

Blunting in Thin Sheets

The results discussed so far are for plane strain problems. As long as the
thickness .Of the material is much greater than the bluntness of the crack, the
plane strau.l model is satisfactory. Thus, even in a thin sheet, the situatic;n at
thfe crack tip will be plane strain if the COD is small compared to the plate
thickness. In such circumstances, elastic thinning of the sheet or the
developmgnt of a plastic zone having a plane stress character could dominate
the l?ehav1or of the near tip region in the thin plate. These features have been
considered in such papers as Narasimhan and Rosakis (1988) and Nakamura
and Parks (1987). However, in circumstances where the sheet is extremely thin
or the notch is very blunt, the width of the notch can be comparable to the
thickness of the sheet. In those circumstances, the blunting deformations take
p}ace ‘within a plane stress-like environment. To provide insight into this
sxtuatan, Hom and McMeeking (1988a) carried out three-dimensional
calculations of blunting of a crack in a thin sheet. Prior work on this particular
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issue is confined to research by Nishimura and Achenbach (1986) in plane stress
who matched an approximate solution for the deformation gradient directly
ahead of the blunt tip to an outer solution due to Thomason (1979) which is

similar to the HRR field.

Hom and McMeeking (1988a) considered mode I loading in small-scale yielding
and plane stress far away from the crack tip was imposed. However, a near tip
enclave was treated in a fully three-dimensional fashion. This tip region was
sufficiently large so that all the three-dimensional effects occurred there and
only there. An asymptotic dependence on the mode I elastic crack tip singular
plane stress field of Irwin (1960) was obtained by incrementally applying
displacement boundary conditions remote from the crack tip. The constitutive
law for the material used was J, flow theory (Von Mises criterion with an
associated flow law) with an adjustment to the elasticity for the rotation of the
principal deformation axes. This form of the constitutive law is discussed by
McMeeking and Rice (1975). Both perfectly plastic and power-law strain
hardening results were obtained, but only the non-hardening solution will be
considered here. The uniaxial yield strain was 0.01 and Poisson'’s ratio was 0.3.

The sheet had an initial thickness of ¢, and the crack had an initial notch width
of by. The ratio t,/by is the only length ratio of significance to the problem, and
it was chosen so that the plastic zone could become large eventually compared
with the sheet thickness. The three-dimensional zone near the crack tip was
eventually surrounded by yielded material and a stress field conforming to
Hutchinson's (1968b) plane stress solution developed there outside the region
where the three-dimensional effects were important. Ratios of 5 and 10 for
to/b, were used. The coordinate system used was chosen so that the sheet's out-
of-plane dimension is the Z-axis. The origin was chosen so that the midplane of
the plate is Z = 0 and Z = t,/2 was one of the plate's free edges, the other being at

-t,/2. The X-axis lies at the intersection of the crack plane and the midplane of

the sheet.

The finite element method was used to solve the boundary value problem
formulated in the previous section. The general finite element program
ABAQUS (1984) was used to perform the computations. The three-dimensional
finite element mesh used to solve the problem of a crack in a thin sheet is
shown in Fig. 6(a,b,c). Due to the symmetry of the loading, only one fourth of
the sheet was modelled. That is, the mesh represents the portion of the
specimen for which Z>0 and Y 20 and boundary conditions were used to
impose symmetry conditions on the planes Z =0 and Y =0. The mesh in
Fig. 6(a) is one element deep and surrounds the mesh in Fig. 6(b). The mesh in
Fig. 6(b) is two elements deep and surrounds the mesh in Fig. 6(c). Finally the
mesh in Fig. 6(c) contains the crack tip and is four elements deep. The outer
semicircular perimeter of the mesh is 3000 times the initial radius of the crack’s
tip. There were a total of 3344 nodes and 440 twenty noded brick elements in the

mesh.
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Deformed Crack Tip Configurations The deformed crack tip shapes with

to/by =5 for the sheet's midplane (Z = 0), quarter plane (Z = t,/4) and free
surface (Z = t,/2) are shown in Fig. 7 for the non-hardening (N = 0) case at load

level J/o6yby =2.0 where T is the J-integral of Rice (1966) (Note that Z is the
position on the Z-axis of material points in the undeformed state). The dashed
lines denote the undeformed mesh while the solid lines indicate the deformed
mesh. The COD is independent of Z and is currently about 3b,. This amount of
blunting is sufficient to give characteristic results independent of the fact that
the original notch width was finite. All results discussed are for this load level.
Figure 7 indicates that the deformation near the tip of the crack is three-
dimensional in nature. In the midplane of the sheet the deformation is
concentrated directly ahead of the crack tip, and elements at the crack tip along
the plane of symmetry are stretched by large amounts in the tensile direction.
The deformation at the free edge and the quarter plane is more evenly
distributed about the crack tip. The deformed meshes for a perfectly plastic
material and a strain hardening one are generally similar. However the tip
elements in the hardening case are slightly less distorted at the midplane due to
the strain inhibiting effect of the hardening.

Figure 8 shows a plan view of the deformed crack plane for the non-hardening
case for ty/by = 5. The results show that the crack advances due to blunting
more rapidly at the midplane of the sheet than at the free surface, and the shape
of the crack front creates a lip at the edge of the plate. The figure also indicates
that large out-of-plane displacements make the sheet very thin in the region
near the crack tip. The finite element results show also that there is a linear
relationship between the crack tip opening displacement and the J-integral as
expected from previous work. For an initially sharp crack, the coefficient n for

the relationship b = nj/ g, is essentially unity for the non-hardening case and is .

less for the strain-hardening material. The former result agrees very well with
the linear plastic zone model of Dugdale (1960) for plane stress whereas the crack
opening is much less in plane strain (McMeeking, 1977a). The finite element
case with the smaller sheet thickness agrees very well with the Dugdale result.
For the larger sheet thickness, the finite element result for crack opening at the
midplane is less and is a little closer to the behavior of a plane strain crack.
With increasing sheet thickness, the crack tip opening displacement at the
midplane should approach the plane strain behavior. However, a simple
extrapolation of the finite element results shows that the thickness must
approach t,/b, = 80 for plane-strain-like behavior to occur at the midplane.

Stress and Strain Distributions In The Near Tip Field In Fig. 9, the near tip stress
Ogg directly ahead of the crack at © is plotted versus distance to the crack for the
case to/bp=5 and N =0. Directly ahead of the crack tip, the stresses at the

midplane are higher than the stresses at the free edge. This reflects a somewhat
high triaxiality of the near tip stress field at the midplane Since the hydrostatic

stress along the edge of the sheet is constrained by the free surface, Ogg is lower

there and roughly uniform. At the midplane, Ogg is higher since there is no
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free surface to impose a constraint on the hydrostatic stress and triaxiality builds
up in the standard fashion. However, the hydrostatic stress along the midplane
cannot be maintained on the surface of the crack tip, and therefore a maximum
in 0gg exists corresponding to the maximum for hydrostatic stress, some
distance from the notch tip. The stress maximum occurs directly ahead of the
crack (6 =0) and its value is approximately 20, At angles of 30° and 60° to the
crack tip, the stresses in the near tip region are highest at the free edge of the
plate and indeed ogg is mostly compressive at these angles (See Hom and
McMeeking, 1988a).

Figure 9 indicates also the extent of the three-dimensional stress state near the
crack tip. Adjacent to the tip, the stresses depend on the position of the material
point through the thickness. However, further afield from the crack tip, the
stresses become independent of that coordinate. Thus plane stress conditions

prevail there. At =0, the three-dimensional region extends out to about 6t,,

whereas at 6 = 30 it spreads only as far as 3t,. This is much greater than

previous estimates of this region. At the stage represented by Fig. 9, the crack tip
opening is about 60 percent of the original thickness. At larger relative openings
one would expect there to be a different extent of the three-dimensional stress
region.

The solutions of Hutchinson (1968b) for a sharp plane stress crack tip and
Nishimura and Achenbach (1986) for a blunting plane stress crack tip are also
plotted in Fig. 9. As expected, the plane stress solutions agree with the finite
element results ahead of the crack at the free surface of the sheet and
underestimate the stresses at the midplane. The stresses at all three sections
approach the plane stress solution far away from the crack tip. On the other
hand, the stresses at the midplane near the crack tip are not as high as the
maximum stresses predicted by Rice and Johnson (1970) and McMeeking (1977a).

In that case, Ogg reaches a maximum value of 30,, and therefore a plane strain

field does not develop even at the midplane near the crack tip in the thin
section results.

Ahead of the crack, the strain concentrates into two relatively narrow crossed
bands. This feature is seen most clearly in the contour plot of the effective
plastic strain shown in Fig. 10 for a cross section of the sheet at a distance of 4.25
bo ahead of the crack tip. Most of the plastic strain is concentrated at the crack
tip in the midplane of the sheet. Two shear bands similar to the cross slip
observed by Dugdale exist directly ahead of the crack tip on planes approximately
459 to the plane of the sheet. This double shear band accounts for the large
deformation seen at the midplane directly ahead of the crack tip and at the free
edge for 6 =300 and 60°. However, these shear bands are contained well inside
the plastic zone which extends to about 40 times the original sheet thickness at
this stage of loading (see Fig. 11). Thus, the double shear band region does not
represent the plastic zone by itself as was assumed by Dugdale (1960). Instead,
there is a region of diffuse yielding around the shear bands. Figure 10 does show
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clearly, however, that there is a significant amount of localized thinning
associated with the high plastic strains near the crack tip.

Plastic Zone Shapes Except in the early stages of straining, the thickness of the
plate was small compared with the plastic zone and the solution away from the
crack tip was like plane stress. Therefore, the plastic zone is of uniform shape
through the thickness of the sheet. However, Fig. 11 shows that the plastic zone
is not self similar at different load levels J/ Opbo for the non-hardening material.
The plastic zone does not spread transverse to the crack but extends ahead with
increasing load. For the non-hardening case, the finite element results relate
the length of the plastic zone on the x-axis Tp to the J-integral by

2
I, = 0.28E]/G§ = 0.28(K/00) where K is the stress intensity factor. These

plastic zone sizes from the finite element calculation are smaller than those
predicted by the small strain technical plane stress theories. The coefficient is
0.393 according to the model of Dugdale (1960) and 0.300 from the analysis of
Achenbach and Dunayevsky (1984). The shape of the plastic zone seems to be
influenced by the crossed shear band mechanism ahead of the tip. This seems to
limit the spread of the plastic zone in the transverse direction and so
concentrate it ahead of the crack.

Comparison with Experimental Results A comparison can be made between the
finite element results of Hom and McMeeking (1988a) for the case N = 0.1 and
to/by =10 (which are quite similar to the perfectly plastic case) and the
displacement field measured by Wu and Chiang (1986) for thin sheets of Al
6061-T6 using a combined laser speckle-moiré method. The material and

geometric parameters for the experiment were N = 0.054, E/o, = 246. and
to/lb, =8. Thus, there is some discrepanc between the parameters involved in
0/Y% pancy P

the experiments and the calculations. Figure 12 shows the out-of-plane
displacement directly ahead of the crack tip obtained by Wu and Chiang, as well
as that arising in the finite element calculation. Generally the agreement is
good between the two results. However, the finite element computation
predicts slightly lower displacements ahead of the crack than observed
experimentally. One reason for this difference is that the specimen used in the
experiment was thinner and made of a lower hardening material than the
specimen modelled in the finite element calculation. Thin sheets made of non-
hardening materials deform out of plane more than thicker sheets of hardening
material (Hom and McMeeking, 1988a). The displacements at 30° to the crack
plane predicted by the finite element analysis are closer to the experimental
results. Therefore the finite element solution's out-of-plane displacements are
more diffuse and less concentrated than the displacement field observed
experimentally.

DUCTILE VOID GROWTH NEAR A CRACK TIP

In ductile metals, failure by coalescence of microscopic voids is an important
fracture mechanism both in nominally uniform stress fields and ahead of an
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existing crack. A mechanism has been proposed and confirmed by Low and his
coworkers (Cox and Low, 1974, Van Stone, Merchant and Low, 1974) which is as
follows:  often two families of microvoids play an important role in the
fracture process; the larger microvoids, which nucleate at relatively low strains,
and the smaller-scale voids, which nucleate at considerably larger strains. The
larger voids nucleate by fracture or interfacial decohesion of inclusions and
grow due to plastic straining of the surrounding matrix material; fracture occurs
when they are linked with each other or with the crack tip. The growth of the
larger microvoids can be interrupted by the formation of void sheets between
larger voids or between larger voids and the crack tip. These void sheets are
composed of smaller microvoids nucleated at carbides or precipitate particles
and lead to local failure. Experiments have been inconclusive as to whether
voids formed on precipitates cause shear band localization or merely appear as a
result of it. Although void nucleation is the subject of a great deal of research,
the results are not yet so clear that conditions for nucleations can be used in
void growth calculations. A critical normal stress at the matrix-particle interface
(Argon and Im, 1975) or a critical strain of the matrix material (Brown and
Embury, 1973) have been proposed as void nucleation criteria.

On the other hand, void growth has been studied by several researchers. The
growth of a spherical void ahead of a blunting crack was analyzed in an
approximate way by Rice and Jchnson (1970), who used the results of Rice and
Tracey (1969) for growth of a isclated cavity in a remotely uniform deformation
field in a rigid-plastic material. Rice and Johnson (1970) identified the remote
field of Rice and Tracey's (1969) analysis with their slip line solution (Fig. 2) for
the local stress and deformation fields of a blunting crack computed as if no void
were present. The strong interactions between the free surfaces of the void and
the blunting tip were neglected, except for an approximation adopted to describe
final coalescence of the void with the crack. The void was assumed to start
growing once it was enveloped by the large-strain region ahead of the crack
(region D in Fig. 2). Rice and Johnson (1970) assumed that the void grows until
the distance between the void boundary and the blunted crack tip becomes equal
to the vertical radius of the void. Then, it was assumed that final fracture occurs
by localized necking of the remaining ligament, requiring an additional opening
displacement to fracture equal to the ligament size. They also identified the
initial distance of the void from the crack tip, D, with the average spacing
between inclusions which nucleate voids, and the initial void radius with the
average void nucleating inclusion size. In this way, they obtained estimates for
the COD at fracture initiation, by, as a function of inclusion size and spacing. In
similar work, McMeeking (1977a) studied the growth of spherical voids ahead of
the crack tip and at 45° to it using his results from detailed finite element
analyses of a blunting crack for both elastic perfectly-plastic and hardening
materials. McMeeking's (1977a) results are in agreement with those of Rice and
Johnson (1970) and the estimates for b¢/D are insensitive to the value of the
hardening exponent and the orientation of the void to the crack plane. The
results of Rice and Johnson (1970), McMeeking (1977a) and some more recent
finite element results are discussed in more detail later on in this section.
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on (1977) studied the growth of a spherical void in a rigid-plastic
:;\Jl\i(:grsiscal c(ell and presented a simplified m.o<.:lel for the growtl':1 :)f Sst};lrcllerltc;el
voids near a crack tip. Chiang (1981) used a f}mte element meth}? h0le ang e
near crack tip hole growth and modelled the llgament between t 3 g g s
crack tip with a compact tension specimen. Ao}q et al. (1984) stu 13 e e
tip blunting using Gurson's (1977a, 1977b) constitutive equations to A
material behavior. They also studied the near Cra}ck tip hole grow P
the Rudnicki and Rice (1975) condition _for localization of plastic flo
ligament between the hole and the crack tip.

Cylindrical Holes Parallel to the Crack Tip

Aravas and McMeeking (1985a, 1985b) use}cli l?rlge clefolrirrx::ilrt;S;ll f;g;(tii (Zlﬁglne:‘;
analysis to study the near crack tip growth of long cy R el dine
o a model plane strain blunt crack under small-scale y
E(:illilt?énts. The resultspof the calculations provide a reasonable mlqliielt }igzet?s
behavior of holes generated by long stringers' parallel to ?he crack, 1f ie e
specimens cut in the long transverse direction. Two different config e
were analyzed: one with a single hole ahead of the cra.lck and. one :ivo n e
holes at 30° to the crack line. Sev}el:ral f\fralues foft }:he sa;;?;lr;rg\ tt(;l esxi(e; nr;itions e
inclusions were considered and the effects of this r ' ons o
initiation were examined. In a first set of calculations (Arav
{\I:Ielc‘;\ti‘;reiilxilgf 1985a), the elastic-plastic m;flteri.al was 'assumed to be fultllz'ecit;x:;z
and the presence of the smaller-scale voids in the ligament betxlllveen raitab
void and the crack tip was not taken into account. The ]2.ﬂow t eory,S o
modified to account for rotation of the principal deformatlc?n axelsé wa;.l et
describe the constitutive behavior of the me.lterlal.' Figure sd e
deformed finite element mesh in the near tip region sup(fer};\ose O
undeformed one (dashed lines) for the case of the. void ah(oaad of the Cl;( l:ame by
deformed configuration for the case of the two voids at 30° to the crack }:i e
shown in Fig. 14. In both cases, the holes are pglled towa_rd thg cras1 ”* It)o o
change their shape to approximately ellipthal w1th. the major axis 111'; O
crack. This shows that the effect of the tintert;ctlofx;egtf (t)?ethr;elri b tinsile
surfaces on the hole growth is stronger than the e Wir e e
stress field ahead of the crack tip. The results of Aravas and ih;\e thogse A
show that the cylindrical holes ahead of the crack grow fastciirf sipialor
and this is rather different from what has so far been inferre 1(.or (19%5;;1) s
herical voids by McMeeking (1977a). Aravas and McMee ing
zgvsral geometric);riteria to predicthloca!iza'nonfof flov;re;rée;}lce; lfziir;itszzgrvi}ez
the voids and the crack tip; when the criterion for coa At, e
interrupted and crack extension was assumed to occur.
;giit%ri)}xti:ﬁz;n;?rthep J-integral and the COD for fracture initiation were

obtained.

i king (1985b) took the
t t of calculations, Aravas and McMee '
st e of fhe b scale voids into account by using Gurson's (1977ac,1 ll97t7tl132
equations modified by Tvergaard and Needleman (;984) ;c;ﬁ;réo Geurson
ituti i i ial. Using the mo
tutive behavior of the matrix material c 1
ZZEZttlio‘xlms“;nd a method proposed by Tvergaard (1982) to model material failure,

presence of the smaller-
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they also studied the formation and growth of the microcrack in the ligament
between the larger hole and the crack tip. In this ways, the final stage of
coalescence of the larger hole with the crack tip was analyzed in detail. The
difference between the predicted values for the COD at fracture initiation
between the Gurson and the fully dense material is small and this shows that
the results obtained using the fully dense elastic-plastic material together with
some geometric criterion to predict localization are, numerically, quite
satisfactory.

Spherical Holes Near the Crack Tip

Hom and McMeeking (1988b) carried out large deformation finite element
calculations for the growth of initially spherical holes directly ahead of a mode I
plane strain blunting crack tip in an elastic-plastic material in small-scale
yielding. Elastic-perfectly plastic and strain hardening calculations were carried
out, but only the non-hardening results will be reviewed here. The yield strain
in uniaxial tension was 1/300 and Poisson's ratio was 0.3. A periodic array of
holes parallel to the crack was used so that the analysis could focus on a slice of
material representing half the material between neighboring voids as shown in
Fig. 15. Boundary conditions imposing the symmetry and periodicity were
imposed on this cell to produce an overall plane strain response with respect to
the crack tip. The crack and void surfaces were traction free. Around the
perimeter of the outer semi-circle boundary far from the crack, displacement
boundary conditions were used to impose an asymptotic dependence on the
elastic crack tip singular field of Irwin (1960). The diameter of the pre-existing
voids was ap as was the initial COD of the crack. The distance from the center of
the void to the center of the crack tip was initially Do and this was also the
center-to-center spacing of the voids. Ratios of 10 and 4.5 were used for Dy/do in
the calculations.

The problems were solved using the ABAQUS (1984) finite element program.
The typical mesh in Fig. 15 has 5,535 nodes with 16,605 degrees of freedom and
740 twenty-noded isoparametric brick elements. The mesh was made larger
effectively by using an embedding technique developed by McMeeking (1977a)
which makes use of a plane strain crack tip blunting, elastic-plastic solution
without voids to provide results which were used for the actual boundary
condition in the three-dimensional calculation. Further details on the
calculations can be found in Hom and McMeeking (1988b).

Deformed Configurations Figures 16 and 17 show two views of the near tip
deformed finite element mesh superimposed on the undeformed mesh at a
load level of J/o,a, =33 for a non-hardening material with D, /a, = 4.5.
Figure 16 is a section cut perpendicular to the crack through the center of the
void, while Fig. 17 is a section cut in the plane of the crack. Line A-A identifies
the crack front in Fig. 17. These figures show that the ligament between the
void and the crack is contracting. As it is pulled towards the crack, the hole
changes shape and becomes approximately an oblate spheroid whose major axes
are in the plane of the crack.
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to solve the problem of three dimensio i
c _prol nal v
g crack tip. The mesh in Figure (a) surrounds the mesh Oi;d

Crack Tip Opening and Hole Growth Figure 18 shows the hole growth
magnitudes, the crack tip opening displacement (COD) and the ligament size
between the void and the crack tip as functions of the applied load for the void
spacing D,/a, = 4.5 in the perfect plasticity case. The parameter b is the current
COD, and D is the current ligament size. The quantities a4, 4, and a3 are the
hole's dimensions in the deformed configuration as illustrated in the figure
inset. The holes expand in every direction, but the voids grow fastest towards
the crack tip and towards neighboring voids and thus become oblate as indicated
above. The void's axis a, grows at approximately half the rate of the other two
axes and the effect is distinct. This shows that the interaction between the void
and the crack is strong and overcomes the effect of the mainly tensile stress field
ahead of the crack tip which would be expected to elongate the void in the
tensile direction. Throughout the load history, a3 is approximately equal to a;,
indicating that there is also interaction between neighboring voids ahead of the
crack tip. However, the ligament between the crack and the voids is still smaller
and contracting at a faster rate than the ligament between neighboring voids
because of relative motion of the crack tip towards the voids induced by the
void-crack interaction. Therefore the voids interact more strongly with the
crack than they do with one another. Aravas and McMeeking (1985a) also found
that cylindrical voids grow fastest in the direction towards the crack tip.
However, their cylindrical voids grew approximately five times the rate of our
initially spherical voids. This indicates that void growth strongly depends on
the shape of the void with holes which individually extend far along the front
of the crack being free to grow rapidly. This effect must be a strong void-crack
interaction since it is not suggested by what is known about the growth of
isolated cylindrical and spherical voids (McClintock (1968) and Rice and Tracey
(1969). The results can be compared with predictions using the model of Rice
and Tracey (1969) for an isolated spherical void under a remote uniform loading
which is taken as the crack tip field. For the perfect plasticity case, the voids in
the finite element calculation grow at twice the rate predicted from the Rice and
Tracey model. Also in Rice and Tracey's analysis the void diameter a, grows
faster than the other void dimensions, contrary to the more accurate finite
element calculation. It is interesting to note that the predicted growth of the
void's vertical dimension a4, is roughly the same for the analysis of Rice and
Tracey and the finite element calculation. Therefore, vertical growth of the hole
seems unaffected by interaction with the crack and neighboring voids.

Near Tip Plastic Strain and Stress Distributions Figure 19 is a contour plot of the
effective plastic strain € in the near tip region for the perfect plasticity case
with D,/a, = 4.5 and ]/ 0,4, = 3.3. There are large plastic strains near the void
and in the ligament between the crack and the void. In Fig. 19, a view of the the
crack plane, the contour levels when the voids are not present are also plotted

with dashed lines. It can be seen that around the voids the level of effective
plastic strain has been greatly elevated and this effect spreads sideways between

neighboring voids.
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Figure 20 is a contour plot of the hydrostatic stress oy /3 in the near tip region

for D,/a, =4.5 and N =0 when J/ 6,4, = 3.3. In the plan view of Fig. 20, the
dashed lines indicate the contour levels when the voids are not present. The
void is closer to the crack tip at this stage than the position of the maximum in
hydrostatic stress when there is no void. As a consequence the hydrostatic stress
in the ligament is relatively low anyway. Comparison of the dashed lines with
the full contours indicates a slight drop in the hydrostatic stress in the ligament
due to the presence of the voids. Of course, around the void the hydrostatic
stress is low because of the free surface. Parallel to the crack front, the triaxiality
has built up to nominal levels within about one current void radius. From
Fig. 20, we can conclude that the presence of the void does not elevate the
hydrostatic stress in the ligament significantly but has a more marked effect on

the material between neighboring voids.

Figure 21 shows, for different load levels, the true stress Oyy in the ligament
versus 7, the distance from the crack tip. The distance has been normalized by
the initial void diameter a,. The arrows on the r/a, axis indicate the position of

the surface of the hole nearest to the crack. In the ligament, O'yy decreases with

increasing load. At the free surfaces of the void and the crack tip the hydrostatic
stress is low due to the fact that deviatoric stresses are bounded by the yield
condition and the normal tractions are zero. The hydrostatic stress in the
ligament builds up away from the free surfaces and due to stress equilibrium
the magnitude of the stress is determined by the distance from the void or the
crack tip. Since the ligament is getting narrower with increasing load, there is
less distance for the build up of hydrostatic stress at higher load levels; therefore
the peak value of o,,, decreases with increasing J. Similar results were observed

by Aravas and McMeeking (1985a) for cylindrical holes before a blunt crack tip.

The results of the finite element calculation indicate that spherical voids have a
much smaller effect on the near crack tip behavior than elongated voids.
Spherical voids seem to act as local perturbations to the stress field generated by
the crack tip, so the presence of the voids does not drastically affect the crack tip's
behavior. Only in the later stages of void growth, when the void is very large
compared with the ligament, does the presence of the void influence the crack
tip. On the other hand, cylindrical voids have a more substantial effect on the
near tip fields. Aravas and McMeeking (1985a) have shown that elongated holes
interact with the crack tip at the early stages of loading. This interaction strongly
affects the behavior of the crack tip. Indeed at later stages of crack opening,
Aravas and McMeeking found that an elongated void directly ahead of the crack
and parallel to the tip actually acts as the blunt crack tip.

HOLE COALESCENCE AND FRACTURE INITIATION
In metals, ductile crack advance occurs when individual voids or concentrations

of voids coalesce with the crack tip. The process is often initiated when shear
localization due to microvoid growth develops in the ligament between the
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crack tip and neighboring voids. Several criteria for determining when
coalescence involving major voids occurs have been proposed based on the
length of the ligament relative to the void's dimensions. Hom and McMeeking
- (1988b) use three of these criteria to interpret their void growth results and to
predict COD values for fracture initiation. Rice and Johnson (1970) proposed
that coalescence occurs when the size of the ligament between the crack tip and
the void is equal to the vertical dimension of the hole. This criterion is D = a.
Le Roy, Embury, Edwards and Ashby (1981) formulated a similar criterion based
on experimental observation of spheroidized carbon-steels under tensile strain.
They proposed that void linkage occurs when the longest axis of the void is of
7 the order of magnitude of the mean planer nearest neighbor spacing, or

a™X — $ D. The parameter ¢ is an experimentally determined constant, which
v, is 0.83 for voids nucleated from spherical particles and 1.23 for voids nucleated
4 from elongated particles. From the computations of Hom and McMeeking
(1988b), aq is the largest dimension of the initially spherical void, so the criterion
for this model becomes a7 =0.83 D. Finally, a conservative upper bound to

Plot.of the stress g, /0, along the ligament between the crack tip and the hole coalescence is the criterion that the ligament must neck down to a point. This
at different load levels for a material with N = 0. means D = 0.
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Estimates for the notch width at fracture initiation bf have been obtained by

Hom and McMeeking (1988b) using the finite element calculations and the three
coalescence criteria just discussed. Fracture initiation was identified with the
coalescence of the voids separately with the crack tip. The finite element
calculations were terminated well before these processes of coalescence would
have commenced. However using the rates of void growth, crack tip blunting
and ligament contraction prevailing when the numerical analysis was stopped,
Hom and McMeeking (1988b) were able to extrapolate the results to obtain
TABLE 1 values for the near tip dimensions at the time of coalescence. Table I shows the
predictions for bf in the four cases examined. The results are very dependent on

inclusion spacing and void size. In contrast, Aravas and McMeeking (1985a)
found that for cylindrical voids bf/ D is nearly independent of D/a. Therefore, bf

H'miB is more sensitive to the size of the spherical inclusions than it is to the inplane
dimensions of long cylindrical inclusions when they are controlling ductile
fracture initiation.

D,/a,=4.5 Do/llo =10. D,/a, =45 Da/”a - 10.
17 =5 The COD at fracture initiation has been measured by several researchers
235 experimentally, and Fig. 22 is a summary of those results plotted in the form of

ay=D 1.01 1.40 1.43 195 bs versus inclusion spacing. Most of the experimental results are for
approximately spherical inclusions loosely bonded to the matrix. The
1.84 predictions of the finite element calculations of Hom and McMeeking (1988b)
have been plotted with the criterion D =a and they agree quite well with the
experimental data. The results of the models of Rice and Johnson (1970) and
The ratio by/D.. f . ) McMeeking (1977a) have been plotted also for comparison with the finite
’f/ Po for various void coalescence criteria computed from the finite element results. Their results tend to overestimate the COD at fracture
initiation. The finite element results of Hom and McMeeking (1988b) predict an
earlier coalescence due to a strong void-crack interaction influencing the void
growth. Also plotted in Fig. 22 are the results of Aravas and McMeeking (1985a).

D=0 1.9

a; =.83D
1 0.83 121 1.59

element resuts of Hom and McMeeking (1988b)
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As expected their cylindrical voids coalesce before the initially spherical voids
and lead to a lower fracture toughness for crack growth initiation.

CLOSURE
3 . ; . : -
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