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ABSTRACT

A cohesive crack model is proposed to describe strain localization for the
materials where strain-hardening is not prevailing over strain-softening
(geomaterials, concrete-like materials, ceramics, etc.). Such a model is
able to predict the size effects of fracture mechanics, i.e., the transition
from ductile to brittle structure behaviour by increasing the size scale and
keeping the geometrical shape unchanged.

Whereas for Mode I, only untieing of the finite element nodes is applied to
simulate crack growth, for Mixed Mode interelement crack propagation a topo-
logical variation is required at each step. In the case of four point shear
testing, the load vs. deflection diagrams reveal snap-back instability for
large sizes. By increasing the specimen sizes, such instability tends to
reproduce the classical LEFM instability, predicted by the Maximum Circumfe-
rential Stress Criterion . Experimentally, the fracture toughness parameter
of concrete appears to be unique and represented by the Mode I fracture
energy Gp or the stress-intensity factor Kyg, even for Mixed Mode problems.
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INTRODUCTION

According to the cohesive crack model, the non-linear crack behaviour can be
described by means of cohesive forces in the process zone, representing
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plastic flow, aggregate interlocking, fiber bridging, etc. In this way,
strain localization is taken into account for the materials where strain-
softening is prevailing over strain-hardening.

The cohesive crack model was originally proposed by Barenblatt (1959) and,
independently, by Dugdale (1960). Later, it was reconsidered by Bilby,
Cottrell and Swinden (1963), Willis (1967) and Rice (1968). More recently,
the cohesive crack model was reproposed, with some modifications, by Wnuk
(1974) - the Final Stretch Model - and by Hillerborg, Modeer and Petersson
(1976) - the Fictitious Crack Model. The latter was applied mostly to
concrete-like materials and numerically implemented in a finite element
program.

In the present paper, the cohesive crack model is applied to analyze the
stable versus unstable crack propagation in elastic-softening materials. The
shape of the structural load-displacement response changes substantially by
varying size-scale and keeping geometrical shape of the structure unchanged.
For size-scales larger than a threshold value, a snap-back instability
appears, when the plastic zone is still absent and the slow crack growth has
not occurred yet. Asymptotically, the snap-back load may be provided by the
simple LEFM condition: K; = Ki¢, in Mode I, or by the Maximum Circumferen-
tial Stress Criterion (Erdogan and Sih, 1963): F(K;, Kyr) = Kyc, in Mixed
Mode.

The size-scale transition from ductile to brittle behaviour is governed by a
dimensionless brittleness number sg, which is a function of material proper-
ties and structure size.

The snap-back load-deflection branch may be captured experimentally only if
the loading process is controlled by a monotonically increasing function of
time, e.g. the crack mouth opening or sliding displacement. On the other
hand, the snap-back load-deflection branch may be captured numerically only
if the loading process is controllei by a monotonically increasing function
of the crack length. An example of such function is provided by the "indi-
rect displacement control scheme" (Rots and de Borst, 1987). This technique
uses a displacement norm as controlling parameter. On the other hand, as a
monotonically increasing function of the crack length, it is possible to use
the crack length itself, in Mode I (Carpinteri, 1985; Carpinteri and Fanel-
1li, 1987) as well as in Mixed Mode (Carpinteri and Valente, 1988; Bocca,
Carpinteri and Valente, 1988). Such technique, called "crack length control
scheme", will be proposed in the present paper. FEM-crack propagation requi-
res a continuous modification of the mesh. Whereas for Mode I, only node
untieing is applied to simulate crack growth, for Mixed Mode interelement
crack propagation a topological variation must be performed at each step
automatically (Wawrzynek and Ingraffea, 1987).
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The amount of energy dissipated in the localized Mixed Mode fracture zomne
results to be experimentally equal to the product of Mode I fracture .e?erqy
Gp and total fracture area. Therefore, the introduction of an additional
fracture toughness parameter for Mixed Mode problems, appears unnecessafy.
The assumption of the "Maximum Circumferential Stress Cziterion",.for which
any crack growth step is produced by a Mode I (or opening) mechanism, Seems
to be confirmed by the experimental results.

COHESIVE CRACK MODEL

The Principle of Virtual Work can be used as the integral statement to for-

mulate the elastic-softening problem in terms of finite element approxima-
tion:
IdETch=JduTFdV+IdqudS, (1)
v v 8
T i deT is the
where o = loy, Oy, Oz, Txyr Fyzs tyz] is the stress vector,

vector of incremental virtual strain, F° = [Fx, Fy, Fzl is the vector .of
body forces acting per unit volume, du’ = [du, dv, dw] is the vector of in-
cremental virtual displacement and p~ = [Px, Py: pz] is the vector of trac-
tions acting per unit area of external surface S. )

Eq.(1) is the weak form of the equilibrium equations and is valid

as well as for non-linear stress-strain constitutive laws.

for linear

According to the cohesive crack model, the process zone near the crack tip
can be represented by means of closing tractions pg acting on both the crack
faces. Therefore, the last term in eq.(l) can be decomposed as follows

(Fig.1):

Fig.l. Mixed Mode cohesive crack propagation.
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Jdquds=fdqucds+Idquds, (2)
S Se 3-8,

where S. is the process zone, i.e., the crack surface where the cohesive
forces are active.

Assuming a linear softening constitutive law, the traction versus displace-
ment relationship can be written (Fig.l):

Pc =Py t “TLN (u+ -u) (3)

where p; is the ultimate tensile strength in vectorial form, N is the tran-
sformation matrix from the global to the local reference system, varying
point by point on the crack surface, L is the cohesive constitutive matrix
in a local cartesian system, the index + refers to the positive side of the
crack, while the index - refers tc the negative one.

From equilibrium considerations across the crack surface, it is possible to
write:

+ = + - + -
P =P , P =P , S8 =8 =8/2. (4)
c c u u c c c

The first term in the right-hand side of eg.(2) can be written:
T +T _+ o i
du das = I u ds + J du ds +
I g Pe o Pu s Pu
c c c

+ fsgu” NIN (u* - u7) as - Isgu'T NTLN (ut - u7) as . (5)
c (o4

The last two terms in eq.(5) can be represented as follows:
I {du+}T N 0] L -L] [N 0] (u'
aw f o 87| |-u r| {0 w|\uSOS (5]
Sc/2
The Principle of Virtual Work, eg.(l), can be developed according to egs

(2), (5) and (6):

*T ot as + Is_du_T pu ds +

C

LAk

J deT o dv = I duT F av + J duT p dS + I du
v v §-3_ S(‘;

AT
SC/Zdu 0 N

2246

FINITE ELEMENT DISCRETIZATION AND MIXED MODE CRACK PROPAGATION

Subdividing the domain in a finite number of elements and expressing the
internal displacements by means of locally based shape functions H, it is
possible to write:

ulx, y, z) = H(x, y, z) u . (8)

From derivation of eq.(8), the strain versus displacement relationship can
be obtained:

€=Bu. (9)

Selecting an appropriate constitutive law for the uncracked zone, the stress
versus strain relationship appears as follows:

0 =D (€ - €) + 0g (10)

Substituting eqs (8), (9) and (10) in eq.(7), and indicating by "e" the
generic element, it is possible to write:

+3\T +
du’ ZI 8T DB dv)u -{d“_} (ZI uT (NT) (L] [N] H ds){“_} -
e IV du e 48./2 _ u

= du’ ZI(HTP—BTUO+BTDEO)GV +
e

\'
+ dut (ZI HT p ds)+ du"T(Zj W' p! ds>+ du'T( ;I_QT p as). (1)
€ g5, e gt s
Since:
t'1ctuy , WiCiul , (au'iCidut , tau1C1dul , (12)

an assemblage procedure can be carried out:
+ -
(K-C)u=Fy+Fg+tFy+tFy, (13)

where:
K = stiffness matrix,
C = softening matrix,
Fy, F5, Fy F, = loading vectors,
(K - €) = effective stiffness matrix.

Neglecting the tangential cohesive tractions, the constitutive matrix L

becomes:
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0 0 0
L=|0 o0 o]. (14)
0 0 133

Only the component of the mutual displacement normal to the crack surface, w
(crack opening displacement), is taken into account. The remaining compo-
nents are disregarded.

The scalar quantity 133 is assumed as follows:

133 = 24, for 0 <w (15-a)
c

133 = 0 , for w2 wg o

where o, is the ultimate tensile strength of the material and w; is the cri-
tical value of the crack opening displacement w. For crack opening displace-
ments greater than the critical value w., the interaction forces disappear,
and both the crack surfaces are stress-free. During the irreversible fractu-
re process, the crack opening displacement w results to be a monotonic in-
creasing function of time.

At the first step the cohesive zone is absent, matrix C vanishes and matrix
K is positive definite. A linear elastic solution can be found, giving posi-
tion and orientation of the growing crack. The crack surface S, starts pro-
pagating by a pre-defined length AS.. Such an incremental length is chosen
so small that matrix (K - C) remains positive definite, and the maximum
cohesive crack opening displacement is less than w.. Eq.(13) can be solved
for two right-hand side vectors:

{E =8l 0= By % €5 o (16-a)

(K - C) u7 (16-b)

n
)
33
=
1
'z
(<]

If og is the circumferential stress at the fictitious crack tip, for each
value of the angle 6 it is possible to write:

Aog)y - (oglg = 0y , (17)
and then, solving with respect to the loading multiplier AX:

_ Ou t (0g)p

(og)y (18)

Eq.(18) is interpretable as a function A = A(6). The minimum of X = A(6) =
and the related displacement vector:
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(19)
u = A (min) uy; - w2 .

describe the second step of the cracking process, providing the orientation

of the subsequent crack branch.

At the following steps the same procedure is repeated, without moving the

real crack tip, until one of the following conditions is verified.

(1) The crack opening displacement at the real crack tip reaches its criti-

cal value wg.
(2) Matrix (K-C) in eg.(16) becomes positive semidefinite.

In both cases, the real crack tip moves and the cohesive crack surface Sg

shrinks, until the crack opening displacement at the reél'crack tip is less
than wg, or, respectively, matrix (K-C) is positive definite.

SNAP-BACK SOFTENING INSTABILITY AND BRITTLE MIXED MODE FRACTURES.

Mixed Mode fracture, a topological variation is required at each step of

The numerical response of the four point
crack model.

For
the interelement crack propagation. . .
shear specimen (Fig.2) is analyzed according to the cohesive

The geometrical features of the specimen are the following: 1 = 4b , t = b,

0.2b,c=0.8b and 0.4 b , whereas the material is assumed to
‘ ¥ .

orese - =0.1.
present the ultimate strain €y = 0y/E = 0.741 x 10 " and ¥ 0

_fao b

Fig.2. Four point shear specimen.

Joad versus deflection diagrams in Fig.3-a are related to
(c/b=0.8), whereas the

(c/b=0.4). Both

The dimensionless
the larger distance between the central supports .
in Fig.3-b are referring to the smaller distance

diagrams . 5ta
the structural responses present a snap-back instability for sg ¢ 0.001 ,
being:
w
(20)

c
sg = Gig/oyb + Cr1C © IO o(w) dw.

2249



On the other hand, an evident difference in the P-4 shape transpires

Whereas for c/b=0.8 , the snap-back branch (dP/dé > 0) is followed by ;
n?tmal softening tail (dp/dé < 0), péssing through the stationary condi-
tion dé/dP = 0 , for c/b = 0.4 the normal softening tail does not appear
after the snap-back behaviour, and the snap-back branch tends to go back to
the origin. The latter kind of equilibrium path reveals a potentially brit-
tler behaviour. In fact, if the loading process is deflection-controlled,

(a)
15 L G c/b =0.8
o~
Ke]
iy F A s.=25E-6
o
= B s,=25E-5
§1.0- C sp.=25E-4
» D s;=50E—4
& E s;=10E-3
505 E F s;=10E-2
wnuU. e
2 b G Sg = 1.0
s
5 C
A B
00 I | 1 1 1 ] 1 1 1 1
0 1 2 3 4 5
DIMENSIONLESS DEFLECTION, §/b x 104
(b)
fb= .| i c/b =0.4
E
= A s, =25E-5
g B s =25E—-4
S - C %=50E—4
- _
2 D s,=10E-3
2t E s,=50E-3
2 F sg=10E-2
z D G S = 1.0
s n
= A 8/ ¢
0 L | 1 1 1 1 1 1 1 1
0 1 2 3 4 5

DIMENSIONLESS DEFLECTION, §/b x 104

Fig.3. Ductile-brittle transition by varying the
brittleness number sg = Gpp/oyb
(four point shear specimen).
(a) c¢/b=0.8 ; (b) c/b=0.4.
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the loading capacity would show a vertical drop down to zero, without any
possibility for the crack to arrest.

The maximum loading capacity Ppoygg according to the cohesive crack model,
is provided by the diagrams in Fig.3 . On the other hand, the maximum load
PrepM Of brittle fracture can be derived from the application of the Maximum
Circumferential Stress Criterion (Erdogan and Sih, 1963):

49 _ g , ogYZmr=Kic= Y Gic® - (21)

de

Stress intensification is produced in both the crack tip regions and the
stress-intensity factors for Mode I and Mode II can be expressed
respectively as:
Kp = __Ji__.fl (_l_, C IR (22-a)
tpl/2 b b b
|4 1 a c —_
Kir = izt e v B (=

fr and fyy being the shape functions.
The angle 8, of crack branching is provided by the following equation:

fr sin 8 + f17 (3 cos 85 - 1) =0 , (23)
whereas the Mixed Moge crack instability is predicted by the condition:
] 6
PLEFM COS-TO- [ £ COSZ—ZE s f1y singgy 1 = tbl/z Kic - (24)

The values of the ratio Pcoyps/PLEFM are represented in Fig.4 against the
dimensionless size 1/sg. A transition is evident towards LEFM by increasing
the size-scale of the structure. For the brittler geometry, c/b = 0.4 , the
transition appears to be faster, and already for b 0,/Gyc = 2 x 10 or
sg = 5 x 10_5 , the asymptotical LEFM condition is achieved. In this case,
the size of the cohesive zone is negligible with respect to the size of the
zone where the 1~ LEFM-stress-singularity is dominant.

For c/b = 0.8 , the total load versus loading point deflection diagrams are
plotted in Figs. 5-a and b , in the cases b = 5 and 20 cm respectively. The
Mixed Mode cohesive crack model describes both the experimental curves
obtained in (Bocca, Carpinteri and Valente, 1988) satisfactorily. The size
b=20 cm (Fig.5-b) produces snap-back instability in the experimental as well
as in the numerical curve. The mechanical properties utilized in the
numerical analysis are: Young's modulus E=27000 MPa, ultimate tensile

strength o,=2 MPa, fracture energy Gp=100 N/m.
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0 . 1 1 1
0 <5 10 15 20 1/sg

DIMENSIONLESS SIZE, bo,/¥,. (10%)

Fig.4. Size-scale transition towards
Mixed Mode-LEFM-instability.

The area enclosed between numerical curve and deflection axis is approxima-
tely equal to the product of the Mode I fracture energy Gg and the total
fracture area, and represents the amount of energy dissipated in the
localized fracture zone. The amount of energy dissipated by punching at the
supports, was deliberately neglected, assuming ascending elastic branches
consistent with the elastic modulus of the material (Figs.5).

It is remarkable that the application of the usual Mode I fracture energy Gg
only, was able to provide consistent results. It was unnecessary to introdu-
ce additional fracture toughness parameters, like, for example, the Mode II
fracture energy GFI (Rots and de Borst, 1987; Ba¥ant and Pfeiffer, 1986).
As a matter of fact, the Mixed Mode fracture energy results approximately
equal to the Mode I fracture energy Gp, each elementary crack growth step
being produced by a Mode I (or opening) mechanism along the curvilinear
trajectory.

The sequence of the finite element meshes utilized for the case b=20 cm,
c/b=0.8 , is reported in Fig.6. The trajectory of the finite element rosette
reproduces the experimental fracture trajectory accurately. It is remarkable
that the real crack (complete disconmnection) starts propagating only at the
13th step, when the fictitious crack (cohesive interaction) is beyond one
half of the beam depth. On the other hand, at the 22th step, both fictitious
and real crack are close to the upper beam edge. The single steps are indi-
cated also in the diagram of Fig.5-b.
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Fig.5. Exper imental load vs. deflection curves and

numerical cohesive crack simulation,
for c/b = 0.8 . (a) b = 5 cm ; (b) b =20 cm
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step 3

step 11

]

Fig.6. Finite element remeshing. c/b = 0.8 ; b = 20 cm
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step 10

step 18

step 24

Fig.7. Finite element remeshing. c/b = 0.4 ; b = 20 cm
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The sequence of the finite element meshes utilized for the case b=20 cm,
c/b=0.4 , is reported in Fig.7. Also in this case, the numerical simulation
describes the experimental fracture trajectory very accurately, included the
deviations at the beam edges shown in Fig.8 (Bocca, Carpinteri and Valente,
1988).
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Fig.8. Experimental trajectories followed by the two
symmetrical cracks in the case c/b = 0.4
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