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ABSTRACT

This paper studies the temperature field solutions and the mixed mode stress
intensity factors of a half-plane medium, which contains a near-surface line
crack and is excited by a moving heat source. The paper also presents and
demonstrates the use of a finite difference method for the solution of the
thermoelastic fracture problem. For the discrete numerical technique
employed in this paper, the displacement extrapolation method is chosen for
the determination of the stress intensity factors. The paper also presents
effects on the stress intensity factors due to both the material properties
of the medium and the location of the line crack from the wear surface.
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INTRODUCTION

It was demonstrated that when heat flow is disturbed by the presence of
defects, there is a high local intensification of temperature and its
gradients in the vicinity of the defects (Anderson et al, 1984), causing
very high thermal stresses around the defects. Such phenomenon eventually
results in growth of the defects and may lead to failure. Their paper
considered a near-surface cavity defect and a moving line heat source which
traverses over the surface at a moderately high speed. The current paper
will address the thermal phenomenon of a half-space with a near-surface line
crack defect. The excitation again is a moving line heat source.

For the fracture mechanics problems, to avoid analytical complexity for
complex geometries and loading conditions, numerical techniques are
increasingly being used. Since the late 1960's, the finite element methods
have been used for such complex fracture mechanics problems. Byskov (1970),
Walsh (1970), Wilson (1971) introduced special crack tip elements, which
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directly modelled the square root singularity near the crack tip, combined
with conventional elements covering the rest of the domain, to solve linear
fracture mechanics problems. Recently, Ju and Chen (1988) extended the
special elements concept to the finite difference method and successfully
solved the problem of a semi-infinite body containing a rectangular cavity.
The present paper, the finite difference method will be modified to solve
the line crack problem.

Once a finite difference solution is obtained, the value of the stress
intensity factor can be estimated by the use of the established crack tip
elements. There are many practical methods which can be used to evaluate
stress intensity factors. The present paper will use the displacement
extrapolation method due to its relative simplicity, ease of interpretation
and ready extension of the discrete data.

ANALYTICAL MODEL

The geometry of the medium will be a semi-infinite body containing a line
crack. The excitation of the surface is a moving heat source as shown in
Fig. 1. Since the of the line crack disrupts the homogeneity condition in
the direction of traversing of the heat source, the material coordinate

- system which is fixed to the nedium must be employed. With reference to

previous work (Chen and Ju, 1988,Ju and Huanag, 1982, Ju and Liu, 1988), the
analysis will use the uncoupled thermoelastic theory can be applied.

JTemperature Field

The governing equation for the temperature field is the Fourier equation
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where ¢(=Tk/q0d) is the dimensionless temperature; (f.q)(=xi/d) are the

dimensionless coordinates; 7(=Vi/d) is the dimensionless time; R(=Vd/k) is
the Peclet number; k is thermal conductivity; x is thermal diffusivity and
qo is the average heat flux through the contact area, and V is the

traversing speed of the thermal excitation.

The temperature field ¢ satisfies the =zero initial condition and the
regularity condition at infinity. On the surface, heat flux is prescribed
over a moving contact area. The remaining surfaces, as well as the crack
surfaces, are postulated to be adiabatic.
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Fig. 1 Two-dimensional model
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Thermal Stress Field

The thermoelastic Navier's equations and the Hooke's law are
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where (u.v)(=u1/d) are the dimensionless displacements in { and 7 direction,

respectively; (l“.lf".l”)(wu/ﬁ) are the dimensionless stresses; M(=V/cz)

is the Mach number; N=cl/c2; b2=(3)+2p)/p; 7=q0du/k; A and p are Lame
constants; a is thermal expansion coefficient; p is mass density; and c‘ ,c2
are the dilatational and shear wave speed, respectively.

The medium is initially unstressed. Boundary conditions for the thermal

stress field are: (i) the surface boundary and the crack surface are
traction free; (ii) at infinity, the regularity conditions hold.

SOLUTION TECHNIQUE
Due to the complexity of the geometry and the boundary conditions, the

finite difference method is employed to solve both the temperature field and
the thermal stress field. The difference scheme will now be presented.

Temperature Field
To obtain the solution of the temperature field, an explicit finite
difference scheme incorporating the energy balance method is used. The

explicit finite difference scheme, the stability criteria and the energy
balance method on the surface boundary are discussed in (Anderson el al,
1984). The procedure of the energy balance method at the crack tip is (Fig.

2)

Qup = k (By/2) {[T"(1-1,5,0)-t(1,5,0)1/Ax +
+ [T (i-1,j,n)-T(i,j,n)1/Ax} , (7)
Qp = k (Ax) [T(i,j-1,n)-T(i,j,n)1/Ay , (8)
Uyp =K (Ay) [T(i+1,j,n)-T(i,j,n))/Ax , (9)
Qep = K (Ax) [T(i,j+1,n)-T(i,j,n)1/Ay . (10)
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where Q is the heat flux, indexed by the flow direction, T+ and T represent
the temperatures of the upper and lower surfaces of the crack, respectively.

The rate of change of internal energy U in the time interval At at the point
P(i,j) is

Up = p c (Axdy) [T(i,3,n+1)-T(i,3,n)]1/At . (11)

Conservation of energy requires that the totality of heat flowing to the
point P is equal to the rate of change of internal energy at the same point,

i.e., QSUM = !'JP. The temperature equation at the crack tip in the
dimensionless form is therefore
¢(i,3,n+1) = ¢(i,j,n) + R:; (¢ (3-1,3,n) + ¢ (i-1,3,n)1/2
- 2p(i,3,n) + §(i*1j,n)}) + Rﬁrz 9(i,3-1,n)-2(i,j,n)+
7

+ ¢(i,j+1,n)]. (12)
Similarly, the equations for the crack surfaces can be obtained by using the
energy balance method.

tres

For hard wear material such as Stellite III and a typical asperity speed,

the Mach number for the thermal stress field is of the order of 10—3. Since

M2 is a small parameter, the solution for the thermal stress field can be

obtained by the perturbation method (Ju and Chen, 1988), using M2 as the
perturbation parameter. Since the contribution of the higher order terms
may be shown to be insignificant, only the =zeroth order solution is
presented here.

Since high temperature and high temperature gradient are found in the
vicinity of the crack, a fine mesh must be used near the line crack and a
relative coarse mesh can be used in the regions away from the crack. This
non-uniform mesh can be transformed parametrically to the uniform mesh and
solved in the transformed plane. Discussion of the conventional finite
difference equations and the coordinates transformation are referred to
(Chen and Ju, 1988, Owen and Fawkes, 1983).
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Fig. 3 Temperature distribution,

: L= 0.
Fig. 2 Energy balance at crack tip 0022
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gpecial Crack Tip Elements

Since the presence of heat flow produces no additional singularities (Sih,

1962), the local character of the thermal stress singularity at the c;-n;tz:k

ical stress; i.e., r .
is of the same nature as that of the mechan

;:g plane thermoelastic loading conditions, the displacement field

associated with the tip is described by the asymptotic equations (walsh,
1971)

© pn/2 n n _
w-3 5 (all(s'+ § +(-1)"cos(3)8 - 3 cos(z - 2)0]
- arzx[(xw % -(—1)")s1n('—2‘)0 = -g sin(%l - 2)01) . (13)
and /3
© n n n n _
v =n“:‘ll‘2’ (8‘11[(‘-_ % _(-1)n)sin(5)0 5 sin(-é- 2)81 +
* El121[(1;'— 2 +(_1)“)cog(12‘)0 + % cosx(l—z1 - 2)01) . (14)

where r is the distance measured from the crack tip, x'=3-4v for plane

i 1 - tants to be
gtrain problem, » is Poisson's ratio, an and an are cons

first terms of the
determined. Equations (13,14) shows that the iy

cement series yield stresses as a function of r , which
g;:s;zterizes the stress singularity at the crack tip. In the r:uleri(l::i
scheme, for small r, the first few terms of the dlspla:e::n sez1al
dominate. The conventional finite difference equations an fie dfpe 1al
elements constitute a complete set of difference equations for nding

thermal stress field solution.

NUMERICAL RESULTS

Because of the nonsymmetrical thermal stress field associated with th(: :ing
mode stress intensity factors are to be evaluated. Numerical f;cu:,pulsa c/)s
are carried out for the following values of the parameters: 1:1 -Th;
a=0.3d, d=1mm. The material properties are those of Stelllthe .k cine
smallest mesh size used under the moving heat source and near t erl crac frg‘
is A¢=0.01 and A§=0.005. The mesh sizes are rapidly increased away
these two regions.

Figure 3 compares the temperature fields of the medium with and without a
line crack when the heat source is directly over the crack. The ligament
thickness (thickness between the wear surface and the crack surface).for the
medium with a line crack is L=L'/d=0.022. In the figure, solid lines are
for the medium with a line crack; and dashed lines are for the medium w%th
no crack. The temperature field and the temperature gradient of the medium
containing a line crack is much higher than those of the medium with no
crack. This high temperature field and its gradients are the source of the

high thermal stresses.
Thge plane strain displacement equations are

K
u = 2% (r/g,)l/z [(2k'-1)cos(8/2)-cos(38/2)]-

“rr (r/2x) /2 [(25'+8)sin(8/2)+sin(36/2)] , (15)
ap
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and
o 1/2
v = rr (r/27) [(25'+1)sin(f/2)-sin(38/2)]-

l(II

ap
in which KI and l(II

and p is the shear modulus. Substituting the values of r and u or v for
nodal points along the crack surfaces emanating from the crack tip allows a

plot of KI and KII against radial distance r. The approximate values of l(I

and I(II are thus obtained by extrapolation to r=0. Fig. 4 shows the effect

(r/22) 1?2 [(2k'+8)cos(8/2)+cos (36/2)] . (16)

are the mode I and the mode II stress intensity factors,

of the location of the moving heat source on the stress intensity factors,
where k = k/co.]a is the dimensionless stress intensity factors, d is the

contact width of the moving heat source, and ¢_ = 1 unit. At the time
7=1.2, when the moving heat source is right above the line crack, both kl

and k2 reach a maximum value. This figure thus establishes that, when the

moving heat source is right above the line crack, not only the thermal
stress field but also the stress intensity factors will reach the worst
state.

Figures 5-8 present the effects of the mechanical and thermal properties on
the stress intensity factors when the moving heat source is right above the
line crack. Figures 5 and 6 show the linear effects of the Young's modulus
(E) and the coefficient of thermal expansion (a). Fig. 7 illustrates the
effect of thermal conductivity (k). In this figure with fixed thermal
diffusivity (x), both kl and k2 are inversely proportional to thermal

conductivity, owing to the inverse relation of the thermal conductivity and
result the temperature field. Fig. 8 demonstrates the effect of thermal
capacity (pc) on stress intensity factors with fixed thermal conductivity is
fixed. The figure establishes that, as the thermal capacity is decreased,
the mode I stress intensity factor kl is decreased, but the mode II stress

intensity factor k2 is increased.

The presence of defects will change the pattern of the temperature
distribution. Consequently, the critical depth, at which thermal principal
stress reaches a maximum, is chinged. (Chen and Ju, 1988, Ju and Liu, 1988)
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established that, for a medium with no defect, the critical depth, at which
the principal tensile stress reaches a maximum, is 1cr=0.16 for Stellite
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Fig. 9 Effect of Tigment thickness
on stress intensity factors

III. However, when there is a rectangular cavity, the principal tensile
stress is the highest at the top trailing corner of the rectangular cavity
and reaches a maximum at the critical ligament thickness Lcr=0'°94' In the

present paper, it is found that the geometry of the defect will influence
the critical ligament thickness. As illustrated in Fig. 9, both k1 and k2

reach a maximum when the ligament thickness is at L=0.08.

CONCLUSIONS

The paper demonstrates the use of the finite difference method, supplemented
with a special computational procedure, to determine the stress intensity
factors at the crack tip. The mixed mode stress intensity factors for a
thermoelastic problem with a moving heat source excitation were considered
in both the derivations and examples. The procedures developed can readily
be extended to different loading conditions and different crack geometry.
The perturbation method mentioned in the paper allows one to consider the
various order solutions in the numericai calculations depending on the
magnitude of the Mach number.

The demonstration of the numerical results, we may conclude:
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(i) Because of the poor heat transfer characteristics of the crack
surface, temperature and its gradients in the vicinity of a line crack are
much higher than that of the medium with no defect. This high temperature
and high temperature gradients are the source of large thermal stresses.

(ii) Increasing Young's modulus, the coefficient of thermal expansion
and decreasing thermal conductivity will result in larger stress intensity
factors, leading to earlier crack propagation.

(ii1) Decreasing thermal capacity will result in smaller kl' but larger

K, .
11

(iv) For the moving asperity problem, there is a critical depth at
which the principal thermal stress reaches a maximum (Wilson, 1971). For

Stellite III, the critical depth is qcr=0.16. Ju and Liu, (1988). However,

when there is a defect, the depth at which the maximum value of stress
occurs is changed, depending on the location of the defect (Ju and Chen,
1988). For a rectangular cavity, the maximum thermal stress occurs at the
ligament thickness Lcr=o'094' In this paper, we established that the

geometry of the defect will also influence the critical ligament thickness.
For Stellite III, the critical ligament thickness for a line crack is at

L =0.08.
cr
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