Fracture Analysis of Non-coplanar Crack
Extension Under Mixed-mode Loading by the
Crack Closure Integral Method

F. -G. BUCHHOLZ and H. A. RICHARD
Institute of Mechanics, University of Paderborn, Pohlweg 47-49,
D-4790, Paderborn, FRG

ABSTRACT

The crack closure integral method (CCI-meth.) has proved to be a numerically
highly effective procedure for the fracture analysis of various crack prob-
lems in plane elasticity. In this paper it is shown that the CCI-method can
also be utilized for the fracture analysis of non-coplanar crack extension
in a compact tension shear specimen (CTS-spec.) under mixed-mode lcading.
The investigation is focusing on the directions the new crack is taking when
kinking off from the original crack plane and when further crack extension
is taking place. The results obtained straight forwardly by the CCI-method
or by other mixed-mode fracture criteria are being compared with crack paths
obtained experimentally by mixed-mode fracture of CTS-specimens. Hereby

the tendency of the kinked crack is confirmed to extend preferably in that
direction, which will create predominant mode-I conditions at the actual
crack tip.
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INTRODUCTION

Mixed-Mode fracture is an important subject in fracture mechanics due to the
fact, that mixed-mode crack tip conditions do occure in engineering practice
under various geometrical-, loading- and material conditions (Gdoutos, 1984;
Richard, 1984). For mixed-mode fracture two main problems have to be solved.
The first problem also arising in pure mode-I fracture is the question on
the beginning of mixed-mode fracture with respect to the fracture toughness
of the material. The second and new problem with mixed-mode fracture is the
question on the direction or angle the crack will take when kinking off from
its original plane under mixed-mode crack tip conditions. Both questions may
be answered by the various mixed-mode fracture criteria that have been pro-
posed, but interesting enough rather scattering or even contradictionary
predictions are given (Richard, 1984; Erdogan and Sih, 1963; Hussain et al.,
1974; Nuismer, 1975; Amestoy et al., 1980).
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In this paper the straight forward and numerically highly effectiv crack
closure integral method (Rybicki and Kanninen, 1977; Buchholz and Kanninen,
1986) is utilized for the fracture analysis of mixed-mode fracture created
in CTS-specimens. Hereby emphasis it put on the question which direction or
crack angle the kinking crack will take and the further directions it will
follow with further extension. For this investigation the main advantage of
the CCI-method is the fact, that it delivers simultaneously the separated
engergy release rate Gi(a), i =1,II for the origanally plane crack and
moreover straight forwardly in the same way Gi(a+A5,¢) for the kinked crack,
having the additional finite crack extension Aa in a direction forming the
crack angle ¢ relative to the original crack plane. The same procedure applies
for any further finite crack extension nAa possibly altering its direction
again relative to that one of the preceeding crack extension (n-1)aa.

The obtained results will be discussed with respect to the experimental
results and to the predictions given by the hypotheses of maximum energy
release rates (Hussain et al., 1974, Nuismer, 1975; Amestoy et al., 1980)
or maximum tangential stress (Erdogan and Sih, 1963) and of subsequent
results like vanishing mode-II1 conditions for the extended crack tip.

CRACK CLOSURE INTEGRAL METHOD (CCI-METHOD)

Referring to Fig. 4 and its notations for a pure Mode I condition IRWIN's
well known crack closure integral relation is give by
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Equation (1) delivers the energy release rate Gy(a) on the basis of the work
to be done in order to close the crack of 1engh£ atsa by an amount éa.
According to Buchholz and Kanninen (1986) Eq. (1) can be transformed into
the following FE-representation (CCI-method)

6; (a*0a/2) = £ 5(F, i(a)au, ;p(atsa) + Fy s q(a)suy ;_1(a+sa)) (2)

holding for the LSE-discretisation as given in Fig. 5. In Eq. (2) Fy_j(a)
and Auy,j(a+Aa) are denoting corresponding nodal point forces and relative
nodal point displacements, respectively and t is standing for the specimen's
thickness. It is emphasized that Eq. (2) is not only holding for finite
crack extensions Aa >> 0 but is numerically exact for the actual LSE-discre-
tisation under consideration. As crack opening and crack closure are rever-
sible processes in any elastic configuration this statement also is holding
for a finite crack extension A3 forming a crack angle ¢ relative to the
original crack plane or to the direction of the preceeding crack extension.
Hence in a local crack tip coordinate system of the kinked crack the energy
release rates are given as follows according to the.CCI-method

Gy (a+2d/2,¢) = ’1-(a,¢)Auy’1-_2(a+A5,¢) *+Fy ie1(ase)ouy 5 q1(a+ad,q) (3)
= 1 ' -
Grr(at+ad/2,¢) 1783 (Fx’j(aa¢)AUx’j_2(a+Aa,¢)*‘Fx,1+1(3,¢)AUX,1_1(3+A5,@) (4)
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FRACTURE ANALYSIS OF NON-COPLANAR CRACK EXTENSION

In Fig. 1 the assembled CTS-specimen (Fig. 2) and the loading device is to
be seen mounted together in a tensile testing machine. By the aid of the
special loading device the applied Toad F is acting under an angle a relative
to the cross section AB of the specimen, containing the straight edge crack
of lenght a. Hereby various loading conditions can be created reaching from
pure mode I (o = 0 deg.) via mixed-mode (0 < a < 90) to pure mode II condi-
tions (a = 90 deg.). The correlated quantitative values Kj(a), i = I,II
(K1-2CF, K2-2CF graphs) calculated on the basis of the LSE-discretisation
of Fig. 6 and Eqs. (3) and (4) with¢= 0 and A3 = Aa are plotted in Fig. 7
(Buchholz et al., 1987). They are in excellent agreement with the K1- and
K2-SEF graphs in Fig. 7, representing a reference solution based on a
hybrid singular crack tip element directly delivering the stress intensity
factors in question (Schnack and Wolf, 1978).

The design of the CTS-specimen and of the special loading device has been
proposed by Richard (1981) on the basis of extensive photoelastic and FE-
investigations. A set of CTS-specimens fractured-under mixed-mode loadings
varying from a = 0 deg. (Mode I) with steps of Aa = 15 deg. to a = 90 deg.
(Mode II) are given in Fig. 3. Distinctly the effects of the increasing Toad
angle a on the kink angle ¢ of the extending crack and on the following
instable crack growth are to be seen. The experimentally obtained crack paths
(Fig. 3) have been digitized and incorporated into the FE-model of the CTS-
specimen as illustrated in Fig. 8.

Now we will focus our interest to one typical mixed-mode crack path, obtained
experimentally for a = 60 deg. The mixed-mode conditions at the crack tip
are characterised by the stress intensity factors Kj(ag,a), i = I,II, which
can readily be determined from the correlated Gj(ag,a)-values, calculated

by the aid of the CCI-method for the original coplanar crack ag. In case

of crack extension under this distinctly mixed-mode situation ?for quantita-
tive values see Fig. 7, o = 60 deg.) the crack will kink out of its original
plane. According to the maximum tangential stress criterion (ogmax-crit.,
Erdogan and Sih, 1963) the direction is given by

2
% (04(6.1)) =0 and =5 (0,(4,r)) <0  with (5)
9=¢¢ o $=dg
_ 1 2 3 -
0¢(¢,r) = 7= cos % (Kp cos % - 5 Ky sin ¢) (6)

denoting the tangential stress in a crack tip polar coordinate system. For

r = const. = 0.05 ap the variation of o4 with ¢ is plotted in Fig. 9 pre-
dicting a kink angle of ¢o, TANS = 43,9 deg. which is nearly coinciding with
the experimentally observed crack angle ¢o,EXP = 44,5 deg.. Beforewe analyse
the same situation by the aid of the CCI-method it should be emphasized that
the ogmax-criterion is entirely based on the crack tip stress field of the
original coplanar crack of lenght ag.

In contrast to that we have to consider an additional finite crack extension
A3 with varying crack angles ¢ ¥ (ag, 43) in order to utilize the CCI-method
for this investigation. The results obtained for A3 = 0.05 ap and ¢ = ¢o,EXP ¢
Aej, i = 1,2 are plotted in Fig. 10 giving evidence that the direction
¢9,GMAX = 42,5 deg. (GG-60 graph) of maximum energy release rate for the
finite crack extension A@ is very near to the experimentally observed crack
angle of ¢o gxp = 44,3 deg.. Moreover the plots of the separated energy
release rates G (43,¢), i = I,II (Gl-, G2-60 graphs) are indicating that
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the directions of G(Ad,¢) » max. and Gyy(4d,¢) » min. are coinciding. This is
in agreement with conclusions from the Tgmax " crit. and other energy release
rate criteria (Nuismer, 1975; Amestoy et a?., 1980). The numerical results
for a = 30 and 90 deg. (pure mode 11 loading) are leading to the same conclu-
sions (Steller, 1988).

As discussed before, the CCI-method can straight forwardly be used for the
analysis of further finite crack extensions A3, following the experimentally
obtained crack path (o = 60 deg.). See Fig. 11 for Aa = 243 and Fig. 12 for
Aa = 3b3. For these crack extensions a remarkable and increasing difference
is to be seen between the experinental results and the direction locally
leading to G(Ad,¢) » max. or Grplad,¢) » min.. This is not surprising
because the crack path modelled in the FE-analysis was taken from load
controlled experiments, in which the CTS-specimen was fracturedunstable and
completely after crack kinking occured. This means the unstable running
crack can not follow instantaneously the rapidly changing stress fields.

But first results from running displacement controlled tests shown that under
further quasistatic conditions the crack show further tendencies to follow
Gmax- Or GlImin-directions. That this tendency is inherent in unstable crack
growth too is indicated by the results presented in Figs. 13 and 14. Here
the two crack tip positions before and after the second kink (shortly before
complete separation of the fractured CTS-specimen (Fig. 8) have been analysed
by the aid of the CCI-method. Before that kink, the unstable crack is far
away from following the quasistatic Gpax-direction (Fig. 13) but, interesting
enough, after kinking it is near by (Fig. 14). This is an interestingresult,
although it is clear that the experimental boundary conditions at that stage
of the experiment may differ strongly from those holding for the corresponding
quasistatic FE-analysis.

CONCLUSIONS

This investigation has shown that the CCI-method can straight forwardly be
utilized for the analysis of cracks extending and kinking under highly mixed-
mode conditions. For this complicated type of problem the property of
delivering simultaneously the separated energy release rates is of great
advantage.
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Fig. 1 Loading device with CTS-spe- Fig. 2 Dimensions of the CTS-specimen
cimen (mixed-mode loading, (w = 80 mm, thickness t = 10-
a = 60 deg.) 30 mm)

Fig. 3 CTS-specimens from PMMA fractured under mixed-mode loadings (a = O-
90 deg. with Aa = 15 deg.)
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Fig. 8 Experimentally obtained and FE-modelled mixed-mode crack paths in
CTS-specimens (o = 0-90 deg., Ao = 15 deg.)
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