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ABSTRACT

The finite element method has been applied on thin shell J integral evaluation.
Thin shell J integral has been recently derived using Gurtin~”s approach, which
has been shown to be path dependent, unless the crack is placed along a ge-
neratrix of a cylindrical shell. In any other case two line and one surface
integral should be added to the Rice”s J integral in order to regain its path
independency. Anyhow, even in the case of path dependency of Rice”s J inte-
gral, evaluation of the complete integral expression is relatively an easy
task in the computational mechanics, having in mind finite element method.
Therefore, in this paper the finite element method analysis of the thin shell
J integral has been presented, together with an example regarding axial

crack in the cylindrical shell.
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INTRODUCTION

Thin shell analysis requires generally numerical methods in order to include
the middle surface shapes and boundary conditions which can not be treated
efficiently by the analytical methods. Furthermore, the cracked thin shell is
a problem itself, since the most popular fracture mechanics parameter, namely
J integral, is path dependent, unless the crack is positioned along the
generatrix of a cylindrical shell. Anyhow, path dependency does not eliminate
a possibility of using the conservation law of J integral type for the same
purpose. As it was shown recently, (Sedmak et al., 1988), an energy release
rate due to unit crack growth can be identified with an integral expression
comparising the line integral, analogous to Rice”s J integral, and three
additional integrals (one surface and two line integrals) "recovering" the
path independency of thin shell J integral. Evaluation of the complete
integral expression is relatively easy task in computational mechanics, at
least not more complicated than if J integral were path independent. This is
doubtlessly thru if finite element method is employed, since there is no
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Finite element method for thin shell J integral evaluation

essential difference in its application for the evaluation of all integral

terms involved. i i i ini

analysis ofvgpaclzgriﬁ?:e;hz?$ a;zig; EE;; E;Z?; SSizgg i;?1§§ iagmggz. We apply here simple and effective quadrilateral isoparametric element in the

fracture hani I ; -€9 e scope of the Galerkin method for boundary value problems, what is described

standard ngmg?écf Ea;?2§£$zé]Izhz??switaggnogx?g?]zigéﬁ wengg¥g Choseg the elsewhere (Berkovi¢, 1982a, b). It is to be mentioned here, that no singular

use thin shell J i ty 1 h ind d G 2 ing us o element is used, since an extrapolation technique has been used in a manner
gl pe 4 i TICEERD ent integral. Th? progedure toy described fully by Sedmak and Berkovi¢, (1986). The accuracy of such a pro-

complete expression evaluation is presented, but an example is still lacking. cadure 1S OF Hie same order as with thé simi]a;ly gradied mesh with singular

elements. It should also be mentioned that the procedure applied here takes

only linear elasticity into account, although the approach is nonlinear and

Based on the analysis given by Sedmak et al. (1988), we define here the fol- can be easily adopted for both material and geometrical nonlinearity.

lowing integral expression: Taking the displacement and stress field as already known (we have used
software DSTATA, deve]oged in the Aeronautical Institute jn Zarkovo, Yugoj

J=f[Ws%-( Nu_+ In dL-/[Ws™=( A* > 1, .NdA- (W e. +. slavia for this purpose), their post-processing toward J integral gva]uat10n

£ (N R"akl)]e fadt é[ % A ity LR e-NaA éw € mdL+£§ el () is described in what follows. Having in mind expression (1) we define now

all quantities needed:

Thin shell J integral

where W denotes the strain energy, u; and 3 derivatives of displacement and

director displacement vector over the coordinate 6! along the crack, B! mixed W= B{lsaeyo +§S“By1 —EE(SQBYO
components of the second fundamental form, e unit vector of crack prop%gation %80 Taf 2L Tafl BATL TuB
direction, m unit outward normal to the crack face, N unit outward normal to

the middle surface (Fig. 1), n, are the components of an outward unit normal ‘ where H is shell thickness and S 23

to the contour of integration I' and p® and pM» denote the stress vector 5 . "
membrane and bending, respecti ; ; : coefficients of the Legendre~s polynomials for stress and strain tensors.
( g, pectively) measure5 in the reference configuration. The are defined by the following relations:

ag 1 a3_o 3.1 HB/ca3 o, 3ca3_ 1
+SonaB)+So Ya3+3sl Yaa-Z—K(Sl Y013+ 550 ch3)] (2)

af SaB Sa3 5a3
) ’ 1 ’

o ! ' are
o’ 1 YG.B’ YQB, Y .o Yu3

As it was shown (Sedmak et al., 1988), the integral expression (1), called

here the thin shell J integral, can be identified as an energy release rate o 1 1 3)
due to unit crack growth along the coordinate 6l. For the cylindrical shell Yap ~ 2xuu8 Yag = §-(xux * Hsua) (
with an axial crack, only the first integral, which resembles strongly to -
Rice”’s J integral, in expression (1) remains, since e-m=0 and e-N=0. In any o 1 1 (4)
other case, either e-m#0 or e-N#0, causing path dependence of the first Yoz = XX * uaH Yas = 3'(HaK * KaH)
integral. In order to illustrate this, we mention here that for the cylindri- (
cal shell with a circumferential crack e-m=0, but e-N#0, producing the aB aBXy_o aB afxy 1 aBXy_ o 5
surface integral in the expression (1). The same situation can be observed S, = A Yxy ST = ATy, t B Txy (5)
for the spherical shells, if the crack is along any of the main circles.

a3 _ 2uH? ,aB o a3 _ 6uH2 ,aB ! 2uH? 0B o

% <73 Vg3 S; =5 ATvgs t s B g, (6)

with A“B=xax8 denoting the first base metric tensor, where symbol ( )a stands
for the partial derivative with regard to convective coordinates o%. ~AaBXY
and B*BXV are tensor of elastic constants, given by:

pobxv o LB (v puBpXe g8l , (7)«
I
e CEn A Ev GRS g I e iaeV it B (8)

where E denotes Young“s elasticity modulus, v Poison”s ratio and finally, u

is the shear modulus, u = HEEDR s

. . . Membrane and bending stress vectors can be expressed through the coefficients
Figure 1. Material surface with an edge crack SQB, STB’ 533 and 5?3’ as follows:
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1 H
N = X2 e (- R X )STE e Jss (9)
a _ ag , 1 HB ag , 1 a3 HB a3
R = XS, + g (Mg T XISy + 5 HO- o8 S°) (10)

Before transforming the aferementioned relations from the convective physical
coordinates 6% into the isoparametric nondimensional coordinates of a finite
element, £*, following relatijons should be writen down:

n,dL = /Ade? n,dL = -/Ade! (11)

so that the first integral in the expression (1) can be writen as follows:
1
J:g(RuzulafRule)/Kde +IW- (N u + M |1/Ado? (12)

We can write now the general transfornation between the coordinates as fol-
Tows:

de® = 29 4.8 (13)

Anyhow, we shall not use here such a general transformation because it is
more cumbersome than instructive, but ruther the specialized one given for a
quadrilateral finite element and cylindrical shell (Fig. 2):

o a oa=p8-=1
3% _ o
28 " a=pg=2 (14)
a # B
§2
L1,1) 3(1,1)
x x G.P - Gauss Point
G.P.I G.P.IV
E‘I
G.P.1I G.P.II
X X
1-1,-1) 2(1,-1)

Figure 2. Quadrilateral isoparametric element
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where 3 and b denote the lengths of element sides. Now, all quantities appeas<
ring in expression (1), can be transformed as follows;:

de’ = a.de? do? = bede’ (15)
_du _au g% o< 1
gy = 2o M BE .51 e =wd (16)
Toae’ ag et 12 ! ta
1 d1g9t 2 1 -1
RV - a—gT_RNa = - oM (17)
2 _ =298 _ z2 2 v
gN° = gN ;g; =gNb Moo= s M b (18)
A A _-A
- _ 2 T117227"1 A —_
A= deth o = A Ayy-Ar; = T (19)
where "-" indicates isoparametric coordinates. Therefore, expression (10) can
be writen as:
. 2 2 JE 1 1 1 /_2
J_bﬁ(R" u;+M x, ) /Adg +[W- (N up+oM ) 1/Ae (20)
where "-" has been omited due to clearity of the expression.

Now the interpolation function for a gquadrilateral isoparametric element
should be introduced:

pk = J-e (=g (1eeh)(1-£7)  (1-eh)(1+8%)  (1eeh)(14E2)] (21)

so that the position vector X and director H can be presented inside an
element as follows:

k k
X = ka H = Hkp (22)
where index K denotes a finite element node (K=1,2,3,4). For the isopara- -

metric element the same representation is valed for the displacement w and
director displacement «:

k
u = upp K = K Pp (23)

since all of the "nodes" values (Xk, Hk’ u., xk) are independent if g%, it
can be writen:

_ k. _ k. _ k. _ k
X, = Xgps M =Hpos u =wpi x =Kp (24)

Qa
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where pg denotes apk/aaa. Therefore, any other quantity appearing in the
expression (20) can be represented using (22) - (24), as it is shown, e.g.,
for the first metric tensor:

_ _ ky 1
AaB - XaxB_ kaax]pe (25)

Procedure for the surface integral term evaluation

Although basically the same, the eva'uation of surface integral term in (20)
involves somewhat different procedure. First of all, an area differential
(dA) can be writen as follows:

dA = /Ade'de® = gg-dgldgz (26)

and second fundamental metric tensor as:

1 =1 1 -1 a
B, = By; B, =B, b (27)

eN=¢e"N =eN =N (28)
giving the expression

1 ; 1 1,,2
—— [ W} - (M%u, + M )IB — /AN.de'de (29)
abp
Finally, we mention that the line integrals (along S+) can be evaluated in
the same way as expression (20), except for the product e-m, which should be
transformed as follows:

RESULTS AND DISCUSSION

Cylindrical shell under internal pressure with an axial crack is used to
illustrate the procedure described i1 this paper. In order to compare the
results obtained here with a literatire data, we have chosen the example
given by Barsoum et al. (1979), which is solved using displacement extrapo-
lation for stress intensity factors evaluation. Since stress intensity
factors are separated on the membrane and bending components- (Barsoum et al.,
19%9), J integral, defined here, shoild be separated in the same way, using
relations:

Jy, = (W62 N“ul)elnudL (30)
L
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1
Jg = i(wBGT-RMaxl)e n dL (31)

where Wy and wa denote membrane and bending strain energy, respectively.

Finally we need relations

K2 K K H
J., = _M.H J. = BH A = M A, = KBH (32)
M E B E 3 M pR/ma B ~ pRV/Ia

Results for AM and AB are given in Fig. 3 for different values of cracked
N

shell parameter A = —— Y12(1-v?)- For the example chosen R=40, H=1, v=0.3
VRH

other data as follows: E=210 GPa, p=1 MPa.
o>
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I ——— paper (6] // ® e
~®
e 03 -
e o
15 | s 02 P
//'/// ~ 4
e ot /
= /
! 1 R 1 2 A3

Figure 3. Results for the membrane and bending stress intensity factors

As one can see from the Fig. 3. the agreement between the results is up to
95%, except for the higher values of A for bending stress intensity factor.
The reason for this is probably due to the coupling of membrane and bending
terms in (2). Anyhow, having in mind that the membrane stress intensity
factor is dominant in this case, the combined value of these two factors is
still in good agreement.
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