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ABSTRACT -

A central notched specimen under biaxial loading has been analysed by the
finite element method using quadratic isoparametric elements. Critical crack
tip opening angle (CTOA) has been adopted as the criterion for crack initiation
and stable crack growth (SCG). Plastic energy, non linear strain energy release
rate (G) and separation energy rate (G2) have been determined during SCG,
The GA has been found to be fairly constant during SCG and could be a good
engineering parameter for simulation of SCG. Energy parameters are sensitive
to mesh discretization and stress-strain representation and have pronounced
effect of higher biaxial (tension-compression) load factor.
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INTRODUCTION

Triaxial state of stress in the vicinity of crack tip due to externally applied
biaxial load becomes conspicuous in respect of shape, size and orientation
of plastic zone and governing strains which cause the crack initiatioir and
stable crack growth. Biaxial load effects on fracture parameters for stationary
crack have been studied by several researchers (Kfouri and Miller, 1977; Lee
and Liebowitz, 1977; Liebowitz et al.,, 1979). Raju and Dash (1979) incorporated
biaxial load effects on stable crack growth for infinite geometry specimen.
Their approxifate analytical study is based on evaluation of plastic energy
dissipation rate in the plastic zone excluding the zone of unloading. Based
on linear relation of plastic energy and crack size, Liebowitz et al. (1979)
have suggested a method of obtaining crack growth curves theoretically and
then predicting the point of unstable fracture. The work of Abou-Sayed et

(1981) is also worthy of mention in this context. Singh and Ramakrishnan
_(—84a, 1984b) studied the biaxial load effects on J-integral, plastic zone, wake,
incremental CTOD, incremental ] and stress distribution in ligament during
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SCG. In their work they have fourd that critical CTOD was affected by less
than 7.5% in the range of biaxial load factor (k) = -2 to 3 and 0 /3y ratio
of 0.3 and could be used as useful fracture parameter for crack initiation
and SCG under biaxial loading. Eftis (1984) has studied fracture characteristics
of collinear cracks under biaxial loading.

This paper presents variation of plastic energy and energy parameters with
crack length under varying externally applied biaxial loads on a central notched
(CN) specimen. Staircase type of lading has been adopted. A series of small
load steps have been chosen for this purpose. The crack is propagated on
attainment of the critical CTOA. Biaxial load factors (k) 1, 0, -1, -2 have
been considered.

CRITERION FOR CRACK INITIATION AND STABLE CRACK GROWTH

The main problem associated with the simulation of stable crack growth is
the adoption of a suitable criterion for crack initiation and advance. Among
the several criteria proposed two important ones for SCG are i) linear plastic
energy crack length relation and ii) critical crack tip opening angle. The authors
have felt that plastic energy being extremely sensitive to yield stress and
the stress-strain representation, is not suitable for a unified approach attempted
in this investigation. On the other hand, the critical CTOA is straight forward
and an attractive engineering parameter for simulating SCG. It assumes that
crack initiates on the achievemen:t of critical value of CTOD one element
behind the advancing crack tip. The elements, through which the crack has
to propagate, are of uniform length. Thus, the latter criterion, essentially
implies the constant CTOA as criterion for stable crack growth. Critical semi
CTOD obtained in an earlier work of the authors (1984a) has been made use
of. The critical CTOD for the present investigation has been calculated in
the above work by making use of the experimental crack growth resistance
curve for a centre notched specimen under uniaxial loading conditions by
Liebowitz.

The present analysis predicts the crack growth behaviour of the same specimen
under biaxial loading.

MATERIAL PROPERTIES, SPECIMEN GEOMETRY, DISCRETIZATION
AND NODAL RELEASE TECHNIQUE

The aluminium alloy (2024-T3) characterised by the Ramberg-Osgood type of
stress-strain relation has been chosen for analysis as a typical example of
light weight high strength material. The constitutive relation in simple tension
is given by the relation

e'=a" +a" o™ (1)

»
where € and o are non-dimensionalised strain and stress. Equation (1) can
be written as

€ = (a/B) +a’(o, /B) (9 /3 )" 2

»
Here @ and n are the strain hardening coefficient and exponent and equal
to 2.207 and 6.025 respectively. The a” is taken as zero for O <& 0_. The
initial ,yield stress, J, , ang modulus of elasticity E, have been taken at 3850
kg/cm” and 724200 kg/cm” respectively. The stress-plastic strain curve has
been represented by multilinear segments. von-Mises yield criterion has been
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assumed to be valid. Incremental theory of plasticity has .been usgq to
generalise the stress-strain relation to multiaxial stress state in the vicinity

of crack tip.

The CN specimen considered, consists of a rectangular plate (30 cm x 80 crp)
having a thickness of 0.1575 cm with a central sharp line crapk 15 cm. in
length. Because of symmetry only the first quadrant of the spe.mmen'has been
analysed. The analysis has been made by using the FEM. Numerically mtggrated
eight noded isoparametric elements have been used. The uncrac!<ed ligament
ahead of crack tip has been discretized into 12 fine elements of uniform length,
and coarser ones after these. The crack tip elements are 0.1 cm. long in
extended crack plane which is 1.33 per cent of the original crack length. The
ratio of the element size and crack length decreases with crack propagation.
Three fine elements of the same size have been provided before the original
crack tip. The vicinity of crack tip has been discretized into sufficiently fi_ne
elements, keeping in view the development of elastic plastic boundary with
load increase and crack propagation, depending upon loading pattern described
later. The first quadrant of the specimen has been discretized into 98 eight-
noded isoparametric elements and 337 nodes. The fine crack tip elements have
specific advantages particularly in releasing the nodes to effect crack advance.

On the satisfaction of the condition for crack propagation, the crack tip node/
nodes are released by debonding them, thereby bringing the cohesive force
at the released nodes to zero. Since the present investigation uses quadratic
isoparametric elements, two nodes, one at the crack tip and another the
midside one just ahead, are released to effect a crack, advance by one element.

LOADING PROCEDURE

Four loading cases considered are uniaxial (k=0); tension-tension (k=1); tension-
compression (k=-1) and tension-compression (k=-2).

In all the four cases the load normal to crack has been applied 1n. 28
incremental steps. At a particular load step, on the satisfaction of the criterion
for crack initiation i.e. on the attainment of the critical CTOA, the crack
propagates by one element at constant load. On the other hand, if the critical
CTOA has not been reached, the next load increment is applied at the same
crack length. This is continued until instability sets in. However, it has been
observed that the crack advances even consecutively by two elements, one
after the other, at a particular load step, indicating unstable fracture.

ENERGY PARAMETERS

Following energy parameters are computed in this investigation.

Plastic Energy: (P)

It is obtained by computing incremental work hardening for all _gaussian points
of all yielded elements and summing that up for all time steps till convergence

such that

T vp (3)
= € W
P J g A ‘Jl wl j

Vv s N : 3
where g, is the stress vector, A § P is the incremental viscoplastic strain
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vector, IJ I is the determinant of Jacobian matrix of the element and W
and Wj are the Gaussian weights and abscissa respectively.

Non-linear Strain Energy Release Rate ( '6')

The total strain eneregy, per unit thickness, U, of the plate is obtained as

U= J‘E‘aone’do+.r 5" g7 4" w
Q0 ~ & 0’0 2 % (4)

e V|
where dg and deg“P represent the incremental elastic and visco-plastic

strain vectors resp&':tively. The complimentary energy (V) is calculated from
the expression

Vebh Lodp-v ©
where I represents the traction vector along the loaded boundary and u
the corresponding displacement vector. '_,Here 0 andp represent the domain
and boundary of the specimen. Thence, 'G is obtained in fixed load condition
as

-
G=2> (6)

where da is the crack extension.

Separation Energy Release Rate (G2 )

This is computed from the nodal reactions (R) and the corresponding displace-
ments (v) for the nodes being releassed to effect the crack advance by one
element. The G4 is equivalent to the work done by the external forces required
to cancel the nodal reactions and is given by

n
By 1
G2 = 1z=1 7 Ry (7)

where n = number of nodes released per crack advance step. In this investiga-
tion the crack is propagated by one element and so n = 2. R represents nodal
reaction just before crack initiation and v, the correspondi%lg vertical nodal
displacement after crack advance is complete.

Evans et al. .(1980) computed the separation energy rate ( Q) as work of
sepz?ration which equals released potential energy minus plastic energy
dissipation and is given in the form of work rate as

_ du® du'P
Q@ @ A 8

e
where du gnd du'P are obtained from the difference in elastic and visco
plastic energies just before and after crack advance step.

RESULTS AND DISCUSSION

The results are discussed as follows.
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Plastic Energy

16 Fig.1. presents plastic energy-
crack size relation for various
wh k's. Plastic energy varies linearly
with crack size and is coincident
for k = 0 and 1. For k = -1,
it is linear up to a/w = 0.525.
With further growth of crack,
a/w > 0.525, it becomes non-
linear. For k = -2, this relation
4 K= is rather complicated. It is linear
°K=0 for 0.507 < a/w < 0.53. The
o Ke-d non-linear relation for k = -1
X K=-2 and -2 with a/w > 0.525 and
0.53 respectively is attributed
to the coarse discretization
of the finite element mesh and
the large scale yielding. Biaxial
loading has pronounced effect
on plastic energy. While linear

100p€ /032 w?

I A 1 1
050 052 0S4 €S6 058 0.60

0.0 1

a/w plastic energy-crack size relation

can be used to simulate SCG

Fig.1. Plastic energy-crack for k = 0 and 1, its use for
length relation. k = -1 and -2 is not established.

The difference between the authors' work and the works of Lee and Liebowitz
(1978) and Liebowitz et al. (1979a)is attributed to the multilinear segment
representation of stress-strain curve adopted in this investigation. It is note-
worthy that the use of higher order isoparametric elements over triangular
elements of Lee and Liebowitz has the advantage of better accuracy.

Separation Energy Rate

Variation of 6 , G A and Q with crac'l_g length and biaxiality is shown in
fig.2. While large scatter is indicated in G and Q at later crack advance
steps with biaxiality, GA s fairly constant during stable crack growth: It
is not much affected by biaxial loading in the range investigated. Thus G
can be regarded as a better material parameter for stable crack growth
simulation under biaxial loading. Lotsberg (1978) observed larger scatter in
the global separakion energy rate than in the local one. It is to be noted that
the value of G*© is very reliable since all the precautions recommended by,
Bleakley and Luxmoore (1978) have been taken into account.

Fig.3. shows the correlation between Ja v/G vs. G/Go and G2 /G vs G/G0 for

various biaxiality ratios. Here G is the elastic strain energy release rate for
various crack: length and appropriate 0/ 0y ratio and G_ is the elastic strain
energy release rate at first load step. The four curves above show variation
of ] av/G for various values of G/GO. The variations are all very smooth. The

value of ] at any particular level of G/G_ is the same for the two biaxiality
ratiopb k = 0 and k = 1. Thus the two Rirves corresponding to k = 0 and 1
coalesce while the curves for k = -1 and -2 are shown above. These
observations are in agreement with those of Kfouri and Miller (1977).
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Fig.2. Energy rate-crack length relation during SCG.

The plot of G4 /G vs. G/G_ s shown by the three curves at the bottom half
pf thefigure-3. The curves for k=0 and 1 are coincident. There is some scatter
in the values but however only the trend is represented by the graphs. There
is certainly a decreasing trend for GB /G as G/G_ increases. The rate of
decrease for high value of k is smaller. o

Because of inherent limitations in the computation of various energy rates,
no conclusion could be obtained so far. Further numerical trials are necessary

before any definite energy rate is identified as a single characterising parameter
for crack growth.

Comparison of Parameters

. —~
The critical values of energy rates (Gc, Gé\ 5 QC) and Jc at crack initiation

are in good agreement. With maximum difference of the order of 6 per cent
in Gé\ from Jc’ GcA can be regarded as good engineering parameter for

: sz : -~
identifying the initiation of SCG. Gc though fairly close to Jc’ except at k
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Fig.3. Correlation between GA, ] and G during SCG.

= 0, shows wide scatter with crack advance. Evans et al. (1980) report signifi-
cant difference in the Qc and Jc values at initiation of SCG.

CONCLUSIONS
Following are the conclusions of the investigation

(i) Plastic energy-crack length relation is linear for k=0 and 1.
(ii) The separation energy rate (GA') is fairly constant for k=1,
0,-1,-2 and can be a good parameter for SCG_simulation.
(i)  The critical values of the ] integral, the G, GA and Q are
unaffected by load biaxility at initiation of SCG.

(ivy The G and Q have similar behaviour in the range of biaxial\
load factor investigated during SCG by 5 elements.

(v) Biaxial loading has pronounced effects on € and Q as SCG
approaches onset of unstable fracture.
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ABSTRACT

Integral equations for the resultant forces on a piece-wise smooth crack line are
formulated and coupled to the standard BEM equations for the outer boundary of a
finite plane. The resulting equations are a generalization of the equations for infinite
geometries (Cheung and Chen, 1987). The integrals along the crack line, with the
dislocation densities as unknowns, contain only a weak logarithmic singularity. An
improvement of the numerical formulation at a kink of the crack line is introduced. Two
numerical experiments are presented and compared with alternative numer;cal
calculations. -

KEYWORDS

Integral equation method; BEM; resultant forces; kinked crack; finite geometries.

INTRODUCTION

Singular integral equations are widely applied for the solution of fyacture mechanics
problems. For cracks in two dimensional infinite geometries and elastic materials, these
equations can for example be derived either by applying the integral transform method,
or by using complex potentials (Erdogan, 1983). The resulting integral equations, with
dislocation densities as unknowns, are expressions for the tractions along the crack line
and contain a Cauchy-type singularity. More general integral equations for finite
geometries, also for the tractions along the crack line, can be derived by performing
partial integrations of the standard BEM equations (Zang and Gudmundson, 1988a).
The numerical formulation of the integral equations is based on a suitable numerical
evaluation of the singular integrals. A collocation method is then applied to derive an
approximate solution of the equations.

It was however shown by Zang and Gudmundson (1988a) that if a piece-wise smooth
crack is considered, the expressions for the tractions on the crack line are not valid at a
kink. This fact can give rise to numerical difficulties. Lo (1978) applied a Green's
function for a point dislocation which satisfies the traction free boundary conditions on
the main crack surfaces. An integral equation for the branched portion of the crack
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