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ABSTRACT

The energy release rates associated with a main crack propagating into a
surrounding damage zone, and a damage zone translation relative to the main
crack, as well as an energy of interaction between the two are analyzed. The
displacement and stress fields for the crack-damage interaction problem are
reconstructed employing a semi-empirical stress analysis and experimental
evaluation of the average craze density in the crazed zone.
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INTRODUCTION

Evaluation of the energy release rates faces the difficult problem of crack
damage interaction. The elastic interaction of multiple cracks has been
addressed by various authors (Hoagland,1980; Gross, 1982; Chudnovsky,1983;
Kachanov at al., 1984; Rose,1986; Rubinstein,1986). We consider a case when
damage consists of an array of microcracks or crazes. Solution of such
problem for a large number of randomly distributed microcracks is
unavailable at present. A Semi-Empirical Stress Analysis (SESA) has been
recently proposed to study such a crack-microcrack array interaction
(Chudnovsky and Ouezdou,1988)

In this paper we employ SESA to solve the elastic crack-damage interaction
problem as a basis for evaluating energy release rates. Evolution of damage
in a vicinity of the fatigue crack in polystyrene ( an amorphous polymer )
is considered to illustrate a methodology of energy analysis. The damage
zone for this material consists of an array of crazes parallel to the main
crack. The craze zone is observed as two subzones. The first subzone is a
core of crazing, adjacent to the crack tip. The second one consists of
peripheral crazes, which are much less dense and can be measured. The
average craze density within a core of crazing is estimated through the
assumption that the stress intensity factor vanishes. This assumption is
based on the observed shape of crack opening (Fig.l taken from Botsis et
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al.,1988). Then, the energy release rates Ji1€ due to crack extension with
the damage zone being stationary, and J1A due to craze array advance with
the crack being stationary are evaluated.

SEMI-EMPIRICAL STRESS ANALYSIS

Following Chudnovsky (1988), the displacement vector uA

generated by the craze array can be expressed as:

WA = J c( () at e
A

at a point, X,

where cI’(é’,x) is the second Green's tensor (Sternberg,1952) and c is craze
openxng densxty which is the product of a craze opening b and” the craze
density, p; vy 1is the ares of damage zone. Therefore, the total
displacement field for a crack damage interaction problem which consists of
the displacement u°(x) due to remotely applied load and displacement caused
by the crack and the damage zone can be presented as:

(2)
u(x) = U°(x) + f 5(8)-®(¢,x) dE + [ c(8) ®(¢,x) dE
~ ~ ~ -—L ~ ~ ~ o~ o~ VA~ ~ ~ o~ o~
The stress field follows from (2) and Hook's law:
3)
o(x) = o°(x) + f 6(8)-F(&,x) dE + [ c(®)-F(&,x) dE
~ ~ ~ ~ —L ~ ~ ~ ~ o~ ~ VA~ ~ ~ o~ o~

;he components Fijk of the third rank tensor F can be obtained directly from
The crack opening displacement B(E) also can be decomposed into the COD
8°(£) due to remotly applied load and COD BA(E) resulting the interaction
with the damage zone as:

4 L (%)
80 = — J [ 7(12- x2) /1172 (1) a1

E x

4 L (5)
A= — S AL 72 x) /1172 [ c(®) Ggrp(£,1) debdl
E x vy o~ ~ ~

where Kjg(1) is the stress intensity factor (SIF) for a slit with no damage
and Ggyp is the SIF Green's Function (Chudnovsky and Ouezdou,1988). Then
the displacement and stress fields associated with the crack can be
decomposed into the elastic field uc a°° induced by the main crack in the
absence of damage and u A, ECA reflect1ng the crack-damage interaction.

It should be noted that crack-damage interaction problem is solved once the
vector c(E) of craze opening density is determined. In.the semi-empirical
analysis c(E) is assumed to be evaluated exper:.mentlly.

As it is mensioned above c(f) is a product of the craze density p(E) which
is reported by Botsis(1988) and the craze opening b(E) which du‘ectly
reflects the elastic interaction. Thus, b(E) should “be observed in the
actual configuration under the load. Reliable experimental data have been
obtained for peripheral craze opening, however, this experimental technique
employed by Botsis(1988) does not resolve b(f) in the core of damage where
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craze density, p, is quite high.- Hence we use another means to estimate

2(5) in the core.

The micrograph in Fig.la taken from Botsis(1988) shows a crack opening
displacement at the crack tip surrounded by the damage (craze) zone. It
resembles the COD of the crack tip in Dugdale-Barenblatt model and thus
suggests the absence of stress singularity. In addition, studies on craze
phenomena (Kambour,1973; Chudnovsky et al.,1981) propose a stress limitation
within the craze zone similar to Von M1ses or Tresca criteria in plasticity.
Based on this we assume that Ktot resulting from the remotely applied load
Kip and the traction at the crack line induced by the damage =zone Ky,

vanishes.

Kio for given load specimen configuration is well known (Tada at al.,1973).

Kjp can be obtained usxng Green's function for SIF Ggrp(x). In the case
under consideration it is observed that crazes are parallel to the main
crack, (n=(0 1)), and the vector of craze opening density ¢ has also only one
nonzero component, i.e., c= (0,c2). The form of GSIF(") suggests that only
the part of the damage zone immediately adjacent to the crack tip, i.e.,
core of crazing affects the stress intensity factor K.

Thus a core avera%e component <c2> of craze opening density ¢ resulting from
the condition Ktol = 0:

<c,>= KIO[ { GSIF(E’:) df 17 (6)
A

To examine the assumption of Ktot= 0, we compare the calculated COP io a
vicinity of the crack tip with that observed experimentally as shown in Fig.
1b. It agree well with the experimentally observed COD shape and

dimensions.
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Fig.l (a) the optical micrograghs displaying damage
zone and the COD in the vicinity of the propa-
gating crack tip. (b) profiles of crack face
displacement due to remote loading, damage
zone and the total crack face displacement
near the crack tip for crack length L=1.55 mm.
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TRANSLATIONAL ENERGY RELEASE RATES

We introduce a '"center of gravity" fc(x|c’xzc) with respect to the damage
density p and consider the crack length 1 and X. rates as independent
kinematic variables. The energy analysis associated with these variables is
the aim of the section.

Energy Release Rate Due to the Main Crack Extension

; To evaluate energy release rate due to crack extension under the condition

‘ that the damage density is stationary p(f,t) = p(x), we model the crack-
| damage interaction by the traction induced by the damage zone on the crack
1 line.

Since we consider a continuous craze opening density, c(x) , there is no
contour which separates crack faces from distributed crazing. Thus, the
energy release rate J1€ can be expressed as the conventional contour
integral over the contour which includes the crack faces similar to that in
Dugdale-Barenblatt model:
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| Fig.2 Sketch of damage zone near the crack
tip and the integration pathes.

where the integration path Fc is shown in Fig.2. The strain energy density
f can be decomposed into that in the absence of damage, £°, and that due to
the crack-damage interaction, f!PI,

1

2 2 2
} £0 = — [(0$9) +( 0S9) - 2v0S%SY + 2(1+v) ( o$9) 1 (8)
2E

11722

i 1 2 2 2
ginte ;{[(asb + (05D - 2v0StoSl + 2(140) (0SD) 1 +

coscl coycl _ cocl cl co co,cl
+ 2[(7|1(7" % U22022 (U11‘7?2+ 0'“022) +2(1+V)01 20‘ 2]}
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here ¢ and o€l result from the second term in (3) combined with (4) and
(5). “Then, apparently,

& int 9
5= e

A "shilding" effect on energy release rate, i.e., negative J110t normalized
by J1° is shown in Fig.3
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Fig.3 The crack-damage interaction energy re%ease
rate Ji"' associated with crack extension
into the damage zone, normalized by the energy
release rate J ° in absence of damage.

Energy Release Rate due to Damage Zone Translation

For an elastic medium with damage, we consider potential energy density = as
a function of the conventional state parameters o and T ( absolute
temperature ) for an elastic solid and an additional damage parameter
p(Chudnovsky, 1984; Chudnovsky,to appear).

T = 7w (o, T, p) (10

~

Then the potential energy Il of the solid, the variation of d?mage density
with the damage zone translation éx1 (along the x—axis, and the
corresponding variation of dIl can be written:

I = [=xadv and 8p = - 8x,.0.p (11)

Y om (12)
8l = -éx,o J — 9,0 av
v 0p

Isothermal conditions are assumed and only defects, such as microcracks,
which do not generate internal stress are considered.

The above integral over a domain v D v, can be reduced to VA(the area of the

damage zone) since 21p = 0 outside of v,. The integral (12) is directly
related to the Eshelby's energy momentum tensor P;.
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2,0 = 3, P o w - 13)
% K'ik> and - Pyy = £853- opju; g

::;::tui :tands for the elastic strain energy density. Then the energ
el ensor EAcan be decomposed into P associated with the craze array
action and P®* reflecting the crack damage interation: g

4. = fA -
T by ek (14)

AC - gACs. ._
Piy = %0 ofuuf ;

1 2 2
A g
£ - [} +Coh) - 200t oA+ 2(144) (@4,) ] 15)

2

1
AC. __
£ [Gg'a-A + oC oA _ 2vot o-A2+ 2(1+y)a(‘:20-1A2]

11 22722
2E 1-2

Substituting (13), (14) and (15) i i
rate due to craze ;one translation:lnto G v obbats the enerey release

oIl

= = JA 4 JAC (16)
F) ! '

Xic
where
JA = [PA o 4T
1 rA|k' k (17)
JAC- J PAC o 4r

:2:;;?5e5r31 path FA if chosen as shown in Fig.2, where the line OA and OA“
cons itu : the tra}11n§ edge of the damage zone (Chudnovsky, 1988) . An
rzsl?pr:? e rggrlarxzatxon of the integral is undertaken in the numerical
ization. € average craze opening bo= 0.51 ( i i
v . 4m)
of the damage zone is evaluated experimentally. e WRSEAEREL. gzt

The 1ntegxal JIA Possesses path Lnvariance with respect to the part of the
N

. .
1ntegxatlou contour outside of VA' The total energy release rate for crack

extension and damage i i
P ge zone translation as a function of crack length is shown
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Fig.4. The energy release rates th°t, J?t°t,
normalized by I}

DISCUSSION AND CONCLUSION

1. This work was initially thought of as energy analysis of a crack—damage
interaction based on the semi-empirical stress analysis. However, crazing
within the core of damage turns out to be too dense to resolve the craze
opening in a relatively thick specimen. Thus, an assumption about the
absence of stress singularity at the crack tip was utilized to evaluate an
average craze opening density at the core crazing. It yields a crack
opening profile resembling that observed experimentally and thereby gives

indirect support for the assumption.

2. Damage shields the main crack in the following sense: it reduces the
elastic energy release due to main crack extension with a stationary damage
zone. In other words, damage reduces the energy available for main crack
advance. The shielding effect is produced by a core of crazing.

3. The peripheral part of the damage zone is the main contributor to this
energy release rate associated with the damage zone growth with a stationary
main crack. The energy release rate due to the craze zone translation can
be decomposed into J C 3 portion exclusively due to the crack-damage
interaction and J4, a portion which mainly reflects self-action of the
damage zone but also includes the interaction.
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