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ABSTRACT

Continuum Damage Mechanics (CDM) provides a methodology for assessing the remanent
creep life of engineering components. CDM can be used either as a computer-based design
method or as a diagnostic tool for calcualting remanent life. To discriminate between
differences in the responses of materials to service conditions, the damage evolution and creep
constitutive equations in CDM need to be based on the physical mechanisms responsible for the
damage processes. The appropriate physical mechanism can be diagnosed by measuring
certain parameters from the shape of the uniaxial tensile creep curve and applying a set of
simple rules, and the results can be used to formulate constitutive equations for multiaxial
stress states.

Continuum Damage Mechanics

Creep lifetime in materials is controlled by the evolution with time of either mechanical or
microstructural instabilities which manifest themselves as the tertiary stage of creep. The
evolution of strain and damage as a function of time can be determined using the formalism of
Continuum Damage Mechanics (CDM) (1-4).

€ =f(o0, T, ) )
o =g(c, T, m) ?)

where G is the stress, T the temperature and o is a parameter which represents the degree of
damage. Equations (1) and (2) are of a form that is particularly useful for computer-solutions
of complicated mechanical and thermal loading patterns. They are also of a form, as shown
later, that occurs naturally from considerations of the various physical mechanisms of tertiary
creep. The constitutive equations formed on the basis of physical mechanisms have the

advantage that the damage parameter @ has a precise physical interpretation and the limitation
and usefulness of extrapolation techniques can be clearly defined. However, such equations
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are generally unable to model precisely the results of mechanical testing and it is at this stage
that a "tuning" or renormalization of the equations based on physical models is required. An
additional advantage of the physical models is that they provide strong insight into the likely
behavior of materials when subjected o multi-axial stress states. Multi-axial stress mechanical
testing which is difficult and expensive can be significantly reduced or even eliminated by
making use of the understanding of the physical mechanisms.

There is an extensive literature concemed with the physical causes of tertiary creep in metallic
alloys: most of it, particularly that which is quantitative, relates to one mechanism, grain
boundary cavitation - which also causes intergranular fracture, and less attention has been paid
to identifying other mechanisms although some progress has been made. Other causes of
tertiary creep have been recently quantified (6,7) and also put within the framework of CDM
(8,9). Table 1 is a state-of-the-art summary of the mechanisms and mechanics of tertiary
creep, set within the framework of CDM: it is based on the work of Ashby and Dyson (7), but
contains a number of differences. The physical mechanisms of tertiary creep have been placed
under three categories to reflect the fact that a Strain-Softening mechanism depends on 6, T and
, whereas a Thermal-Softening mechanism depends on time and temperature only. The
Environmental-Softening category contains both a Strain- and Thermal-Softening mechanism
but has been identified separately because the damage evolution rate depends inversely on
section size, in contrast to all other mechanisms. The symbols used in Table 1 can be found in
Ashby and Dyson (7) except for those used to describe the dislocation-substructure mechanism
and the two cavitation mechanisms. These additional symbols are listed in Table 2.

The dislocation-substructure mechanism was first described by Dyson and McLean (6) and the
particular form given in Table 1 is different from that used in previous publications (6,9)

because the damage parameter has been redefined so that it falls within the range 0 <w <1,
rather than being unbounded. The different definitions of damage and damage rate are related
by the transformations:

=1 -exp(-s)
@=exp(-s) $

where s = ln(p/pi) is the previous definition of damage.
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Table 1. Creep Damage Categories and Mechanisms
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Table 2. Symbols used in Table 1 and not identified previously

dislocation density;subscript i denotes initial value

©
P

empirical constant

fraction of grains containing a cavitated boundary
fractional area occupied by transverse boundaries
grain size

cavity radius

cavity spacing

empirical rate constint

ANnNae mAD

There are many different cavitation mechanisms and these can be found in the CDM format in
previous publications (8,9,10). The wo included in Table 1 are for creep-constrained
cavitation, which is believed to be more appropriate to the conditions experienced in service
viz, low levels of stress and, often, triaxial states of tensile stress.

When @ and € are integrated as a cospled pair under constant temperature and loading
conditions, expressions are obtained for: (i) the Monkman-Grant parameter, Chn= éi tes
(ii) the strain at failure € and therefore, (iii) the creep damage tolerance parameter (12), A =
€/Cppy. In Table 1, “failure" is always taten to be at ® = 1 and so these are upper bound values

for each mechanism acting alone.

In practice, it is unlikely that one damage mechanism will operate alone. For example,
although the Hoff (13) limit of C,;, = 1/nis predicted correctly in the first mechanism in Table
1, the value of &f = << is never found. The simplest procedure is to assume that a second

damage mechanism affects only &¢ and does not influence the primary damage evolution rate

nor the strain rate. Ashby and Dyson (7) assumed that this happened for the necking instability
and gave:

f" n-1 “4)
and therefore A> — )

while still retaining C;, = 1/n.

In a similar manner, for dislocation strair-softening materials, C;, = 1/C where C is, as yet, an
empirical parameter that characterises material-class. It lies between 30 and 50 for D.S. nickel-
base superalloys and appears to be as high as 200 for the aluminum alloy R-R 58. Dyson,
Leckie, Shawki (14) have shown that maerials obeying the creep constitutive law for
dislocation strain-softening are susceptibk to the necking instability, and that the condition for
instability, is
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2 (6)

The possibility of synergy occurring between two damage mechanisms appears to have been
considered just once (11) and then only approximately.

ntifying the dominant dam rocess
Ashby and Dyson (7) suggested that the creep damage tolerance factor D.J could be qsed to
diagnose whether or not cavitation was the dominant damage mechanism respot?mble for
tertiary creep. The idea is illustrated in Fig. 1 where creep strain is plotted as a function of the

dimensionless parameter £t for three classes of material. The data are compared with tertiary

models for caviation' which predict that creep curves all lie within the range 1 < A <23,
regardless of the detailed mechanism (Table 1 and Ref. 7). D.S. nickcl—base. superalloys fall
well outside the cavitation regime as they should since they were the seminal example of
dislocation strain-softening (6): their behaviour appears to be delineated by 30 < C < 50.
These alloys fail in tension after developing noticeable necking at straix_xs < }5% and yet .Eq. 4
predicts that necking should not begin until > 40% strain. Their behav.xour is more consistent
with the suggestion that Egs. 6 may be more appropriate for these materials.

The aluminum alloy R-R 58 also falls outside the cavitation rcgi.me s the inseft shows this mon;
clearly - even though the fracture strain is only 2%. Failure in this alloy is a'long planes o
maximum shear stress in both uniaxial tension and compression and compressive response is
identical to tensile. Contrary to an earlier proposal (10) we believe that fracture in .thxs alloy is
due to a mechanical instability because of its very high C value of 200. Imer'estm_gly, Eq. 6
predicts that the alloy should develop an instability at a strain of 2%, which is identical to the
observed fracture strain.

The Type 316 SS is an example of a poorly cavitating material wl'?ich damages due to the
increasing stress at constant load and fails due to necking at the strain predicted by Eq. 4. It
provides an upper bound to life for a power law creeping solid under constant load.

Thermal-softening mechanisms can easily be distinguished from ot}'1ers of. high I7?| simply.by
pre-aging the material prior to creep: in contrast to its effect on the dislocation strain-softening
mechanism, large decreases in creep resistance will be found.

Continuum Constitutive Equations

The continuum constitution equations should be written in such a way .that they reflect the
physical damage described in Table 1, be capable of descnl?mg the tensorial ngture of datl“mz.ige
and its growth under multi axial stress states and l?e in a forrrf cqnvcmcm forf itting
experimental data. Equations which to large measure achieve these objectives have the form

.
o ™

ij

2173



where the potential @ has the form
2
D = éo L_ “'H 1 ﬁ.
“n+llo,(1-w) A5, ®
and the damage rate is given by
v
o= —20 [A("ij)]
a- (o)w g, ®

In these expressions @ o> 1, ¥ and v are constants which can be determined from uniaxial data
and A(oij) describes the shape of the Isochronous Surface in stress space, which is equal to o

for a maximum principal stress material and O for an effective stress material. The quantity p
is a measure of the density of crack-like features and is introduced to allow for volumetric
effects although these are generally small and are frequently neglected. The damage parameter
is interpreted according to the description given in Table 1. The tensorial description of
damage does require some discussion however.

The work of Onat and Leckie (11) has demonstrated that damage can be represented by even
order irreducible tensors. In the case of damage which takes the form of change in dislocation
substructure the damage is isotropic and can therefore be represented as a scalar in Eq. 9
Furthermore we expect for materials which soften according to this form of damage that the

function A(cij) is equal to the effective stress O and that A shall be large.

By contrast when material damage is that of cavity growth, damage occurs on planes
perpendicular to the principal stress and is highly anisotropic. In such circumstances it is
necessary to identify damage with a number of directions and methods for dealing with this are

described in (12). For such materials we expect that A(oij) = GI that A will be small and that

the damage is highly anisotropic. In fact it would appear that the value of A is helpful not only
in identifying the physical damage mechanism but in establishing the tenserial form of damage
and the form of constitutive equation. The results of non-proportional multi-axial stress
loadings on copper and precipitate hardened aluminum alloys (13) provides some evidence in
support of this postulate.

SUMMARY

Creep damage mechanisms are presented in a unified form suitabléfor the development of
constitutive/damage equations appropriate for continuum calculations which retain the physical

features of the damaging process. The importance of the creep damage tolerance factor A in
identifying physical mechanisms and establishing constitutive equations is disucssed.
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Fig. 1. Diagnostic Diagram

2176


User
Rettangolo


