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INTRODUCTION

Generally practical materials have some microflaws or macro-
flaws. It is an important to analyze the macroscopic behavior
of these materials with Damage Mechanics.

Kachanovf) | Lemaitre and chaboche €@} introduced the effective
stress and described the effect of microflaws on the macrosco-
oic behavior of materials. Rousselier t3 assumed that damaae
variable is associated with material density. Mclintock ¥ ,Rice
and Tracey 3 analyzed the damaae materals with microscopic mo-
del. An anisotropic damaae variable which has more general sen-
se is given with associative method of macroscopic and micro-
scopic models in this naner. The differential equation of state
function for the anisotronic damage with microvoids is given
and its aopriximate solution is obtained. For the special case
of spherical voids, the final result is compared with Rousse-
lier's result. It is also pointed out that plastic potential is
associated with the stress state and growth way of microvoids.

ANISOTROPIC DAMARE VARIABLE
Lemaitre '®? cosidered the free eneray function as follows
e
U :We(ﬁ ,D) + wp(p) (1)
where U, is elastic eneray density associated with damage; 1
is the free enerqgy associated with accumulative plastic defog—
mation. We is aiven as

€:c:£€(1-D) (2)

U] l— >
le=5p £

let

[}

= ¢(1-D), then eauation (2) becomes
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U = ogp £°:8:€8 (3)

S is tbe effective elastic constant. Damace is the state varia-
ble wﬁlch has an effect on the elastic constant according to
equation (3). It is also obtained as

e

g = c:(I-D):e® = T:e®

3 (4)

1

The damage variable D can be determined from €.

Con§ider an infinite body including the finite inhomogeneous
reqion with the ellipsoidal voids of same orientation and the
matrix of the body is an isotropic medium as shown in Fig.l.
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Refs. (7)) and (8) were given the solutions of problems of single

and more inclusions, respectivelv. Let Ijj and Ejj be the alobal

stress and strain of the body, then the strain enerqy is as °’
1~

¥ = stimatiztia (5)

™0

15kl indicates the effective elastic modulus. It is as

~o1 _ 0-1 0-1
C 13K1 = C ikl + fAijmnC mnkl (6)

Coiikl’ f and Aijmn are elastic modulus of matrix, ellinsoidal
iqclusion volume fraction and cofficient associated with the
size and volume fraction of ellipsoidal voilds ¥ . In the form
of tensor,

€' =c™t + fA:CT? (7)

From equation (4), the anisctronic damage variable is as

D = I-C7:(C™ + fA:CT )7 (8)
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Tt is noticed that the damace variable depends on the volume
fraction and size of ellinsoidal voids. So D can be assumed as
follows

D = D(y,f) . (9)

where Yy is the ratio between the long and short axis. D can be
assumed the simple function of y and f for some special nro-
blems.

DIFERENTIAL EQUATION OF THE STATE FUNCTION

In this paner, the followina assumntion are made:

a) The flaws are the forms of microvoids after yieldina; b) The
material with damaae is of the general standard material; c)The
damage parameter is an independent internal variable of irre-
versible thermodynamics and satisfies continuance conditions.

If the arowth of microvoids is isotropic, damage dissipation of
enerqy consists of two parts:a) work done by external force for
the arowth of microvoids; b) the dissipation of eneray formina

new surface. Let Wg indicate the sum of two parts.

For an infinite homogeneous medium with an ellinsoidal void, Wg
is exoressed as

am

"
Vg = F o+ 65 (10)

where opm, 6 and S are the averaane stress, surface eneray of
unit area and area of microvoids. In fact, G<<om in auantity,
so

Wg:(-%mlf—f (11)

The state function can be divided into two narts. One is free
eneray shown in equation (3). Another one is potential of di-
ssipation which can be assumed as

U= Ual(p) + wz(y,f,e‘;j) (12)

From equation (12), we have
(d) _ 3, (d) _ 3y, _ 9y
BY = 5y’ Be = 57 A = i (13)
Substituting eqn. (13) into (11), one obtains

(d); omn f
BY Y+Bf f:Tr_—f (14)

v=0 when the arowth of ellipsoidal voids is isotronic. Then

3y, 1 1 _ 30 302 1
e—fE_TOml—_—f- (Eg L g é—E_ﬁ) T-F (15)

Accordino to ean. (3), one gets
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Sefn C F ki tk1 (16)

Litlcmnkl'Kkl(y’f) be known function, take approximate solution
of W

Uy, = fa(y, f) + fij(Y,f)eije (17)

Substitutine eqn. (17) into (15), one obtains

3f, 1 afi5_ 1
of _]._——f'fii(Y'f)’ Bf‘ T(1I-7) Kij(Y’f) (18)

%;Sghe case of determined y and f, ¥, can be obtained by equ.

PROBLEM OF SPHERICAL VOIDS

Assume spherical voids does not affect on elastic modulus of
material, then

1
we:waijecijklaije’ \U=¢1(P)+lbz(8,5,?,) (19)

B8 is damane variable of microvoids. When y=1, then
B = B(F) (20)
Accordina to the constitutive relation, we have

dUe RUPY ERU 3w1

;4= SE;?_ 4 52;? , B= 53- A= (21)
From eqn. (19) and (21), one obtains
am _ e 1 23U,

7 _l<s:|_"+?a—g—re}l (22)

where K=E/3(1-u). Substitutina ean. (22) into ean. (15), the
followina equation is aiven

W, s _ 1 4,
IxgB = (7; Tee + Kem)l f (23)
Generality is not lost, let B=Ln(1-f), then
1 e K
Py = -—,:'KBEm + ?Bz (24)

Equation of y=y1(p)+,(R) is chosen and ean. (14) is not men-
tioned in Ref. (3).

The discussion of nlastic notential is based on semianalytical
assumption. It is reasonable that Y, is function of B and ¢
m

Take B=R(S§), one obtains
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B (PIUE(B) = %ﬂ‘ (25)

The defference between eaqn. (26) and result of Ref. [3) is that
the riaht term of Ref. (3) is oo/c. In fact, the result of Ref.
3) is the approximate result in the case of perfectly plas-
ticity.

Take plastic potential as aeneral form as
1 1
FOS,01(0), 02(R),8)=(3,(3)) e LiiPlur (v, ) (26)

The plastic potential of isotropic arowth of spherical voids
can be obtained with similar method of Ref. 3 and it is as
follows

Fo [32(—)]2 ”—}T(L) + 0.327 fexp (322) (27)

Actually, the growth of microvoids depends on the stress state.
The plastic potential of spherical voids in the case of uni-
axial tension is as
sp, . _3f 25B2
1T [3-5F) 16
where A=0}(n), B=0,(B), [J,=0o,/ 3 if the matrix is perfectly
plastic medium. When the last term of eqn. (28) can be nealec-
ted, plastic potential is as

———+0. 64400cosh(———)+0 0090051nh(z——)] (28)

[32(%?)) +A/j§_+ [a282+0.64400005h(§%3)] (29)

CONCLUSION AND DISCUSSION

An anisotropic damaae variable which has more general sense was
obtained by the associative method of macro-microscopical models.
Present damage variable is associated with the size of micro-
voids. The state function taken in this naper consists of re-
versible and irreversible parts. The differential equation of
state function was obtained. The olastic potential of soherical
voids in the case of isotropic arowth was aiven. The nlastic
notential of anisotronic arowth of snherical voids was also gi-
ven in this paper.

It is noticed that the solution of differential equation for
multivariable damaae problem is not closed. The aeneral analy-
tical solution of U should be aiven in next study.
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