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ABSTRACT

The repair or replacement of defective structures can be avoided if it can
be shown that the defects will not grow in service. Methods are required
for assessing the initiation of crack growth in service conditions in terms
of the initiation of crack growth in test conditions. Of the parameters
which characterise conditions at the crack tip, those which have been
calculated most accurately have been contour integrals around the tip.
Hellen (1988) has recently developed an infinitesimal virtual crack
extension method which calculates what, for a suitable choice of contour,
would be an equivalent parameter for a non linear elastic material.

The present note compares these parameters for an elastic plastic material
under mixed mode and repetitive loading to obtain some of the information,
on the basis of which, guidance can be given as to when the new method and
when the contour integral method should be used to correlate test and
service conditions.
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INTRODUCTION

Hellen and Blackburn (1987) have recently reviewed the determination of
parameters characterising conditions at crack tips, and have noted 8l cases
depending on whether: a) the loading is tearing, sliding, mixed mode;

b) the crack is stationary, growing quasi statically, growing dynamically;
c) the geometry is two dimensional, axisymmetric, three dimensional;

d) the material response may be treated as elastic, time independent, time
dependent. In some cases the choice of most appropriate parameter may also
depend on whether the near tip loading is radial, monotonic or non
monotonic.
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In numerical investigations, as when comparing test and service conditions,
it 1s highly desirable that the selected parameters should be
computationally robust. Two general techniques produce parameters with
this property, integration of a contour integral around the crack tip
(especially if the result is approximately path independent), and variation
of an expression such as the energy, with respect to the coordinates of the
crack tip position. In the simplest case, i.e. the first condition for a,
b, ¢ and d above, the contour integral method, Rice (1968), and the virtual
crack extension method, Hellen (1975) and Parks (1977), give rise to the
Same parameter, and this parimeter can be evaluated also by taking the
difference in energy for two slightly different sizes of crack, de Lorenzi
(1982). The usual contour integral used for this simplest case is

* aui
Jog =JWN - t..N, 1) 4

for a contour around the tip, where W is the strain energy density, N. are
direction cosines of the normal to the contour, u. are displacement
components, t,. stress components (transpose of first Piola-Kirchoff stress
in the case O%innite deformations), and x, are Cartesian coordinates with
X3 in the direction of the crack edge and Xy in the direction normal to the
plane of the crack. Because the area near the crack tip is that in which
the stresses are calculated least accurately, the computation should be
carried out on a more distant contour, with, if necessary, a contribution
over the area in between the contours from an integrand obtained from
Green's divergence theorem. 4n improved technique suggested by Li et al
(1985) and extended by Shih et al (1986) is to multiply the integrand by a
function g which is unity on the inner contour and zero on the selected
outer contour. Thus when determining the integral on the inner contour by
evaluating it at a distance, the integral on the outer contour is zero.

The penalty ensuing is that the integrand in the area in between is more
complex, although it can be evaluated from the values at Gauss points where
the integrand is likely to be more accurate than on the outer contour. The
physical significance of the contour integral is that as the contour
shrinks on to a flat process zone at the crack tip the first term in the
integrand does not contribute to the value of the integral, so that the
value of the contour integral is - t; :N.du, around the flat pProcess zomne.
This is the work done in producing new gur%ace on each face of the crack
per unit of crack extension. In the simplest case this contour integral is
path independent. For more conplex cases this need not 3 so, and an

u
alternative integral J¥ = 5t.. (—L -9 i ds, which also
1 i3 “ox.

e T

has the same limit for a flat process zone, has been proposed, Blickburn
(1972), where e.i is the thermzl strain. This is equivalent to J for a
linear elastic ﬂaterial, and has been suggested, Blackburn (1985), as being
more relevant for complex conditions such as repetitive loading. It can be
computed away from the tip with a surface integral over the area in
between, either directly or by multiplying by the function g Which is unity
on the inner contour and zero on the selected outer contour.

These integrals are, as shown by Knowles and Sternberg (1971) for J:I, the
component in the X; direction of vector contour integrals. The component
in the Xy direction can, in principle, be calculated similarly. 1In
practice there is the difficulty that, whereas for the X; component, when
there is no loading on the crack face, both near and far contours can
usually be assumed to start and finish on the crack face, this is not so
for the Xp component, except when it is zero, as for single mode loading.
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Hence integration has to be carried out on the part of the contour which is
on the crack face.

The alternative approach for elastic materials determines quantities Gy,
and G2 by taking the energy difference for small differences7§n t :
coordinates at various points on the crack edge.' Hellen (1975) an

Parks (1977) showed how this could be done with just the one comp:tation
rather than with a separate calculation for each crack edge position. .
Haber and Koh (1985) and Sussman and Bathe (1985) showed how the lgsi o
accuracy associated with taking small differences can be eliT;;;te Liy -
carrying out the differentiation analytically. de Lorenzi (h ),t re
(1985) and Shih et al (1986) have shown the equivalence of the c;n ou -
integral and virtual crack extension parameters when the materia ;EESAgE
treated as elastic. These techniques have been incorporated into e
and applied to mode I radial loading of elastic plastic mat:erial:,l ii en
(1988). The next question to be discussed is the extension to elastic
plastic materials under a non radial loading.

RELATIONSHIP BETWEEN CONTOUR INTEGRALS AND ENERGY VARIATIONS

It is useful to start with a resumé of the elastic case presented by fined
de Lorenzi (1982). For simplicity this summary of his results ii confine
here to a two dimensional geometry with no body forces or therma zr
internal strains and with infinitesimal deformations, though all ; ess
restrictions can be removed. For an increment éxo of the crack t i’b ean
associates a continuous transformation of the neighbouring materia1 y .
amount éxk. He considers in particular the case when a number oi ayerido
elements around the tip move by éxo, there is then a transitionf azetbad
then the elements beyond are not transformed. Thus only part of t eh ody
need be analysed, the displacements being fixed but unspecifiedhon ttﬁod
boundaries which are not free surfaces. For an elastic body, t : meit
attempts to calculate jfb&x (WdS) where W is the strain energy density,

P ®  (Was) =
taken over the transformed parts of the body. He showed that 66xo ( )

4 (aéxk) dS, where the term —6jk arises from the
A6x ox .

differentiation of dg- LiJet al (1985) showed that for a crack tip Lt ae
displacement for which 6x; = 6x° at the tip, this gives the szme resuin as
the contour integration method with g as 6x1/6x for variable 6x., af : he
particular case of a transition layer (or thick contour). For X, ; X9
the tip, however, the part of the contour on the crack face cannot1 za
ignored unless W is symmetric across it. The value of the integ;a thzs 5e
then depend on the size of the transforged zone. In the limitiwden his
small the valge should be the same as J_,. On using the path nhepe:esious
property of J_,, if t%e crack face is included in the contour, the p

du
i_
(tij — Wij)

expression with g as —— is recovered along with a contour integral along

e he
. horough discussion of t
he faces of the difference in Wg. At
:elationship between the integrands of the contour integral and variati;;al
transformations of part of an elastic material has been presented by Hi

(1986).

du
i
M M = — th
For other materials W may be replaced by z , where tijA — in bo

J
the contour integral and variational methods. In the latter casé, one Z;
two alternative assumptions is made to allow further progress, either z

2031



i a functions of

u
1 du .,
onl i
" nly, or AW is a function of A —J only, in each case

; . X i X .
tij being the partlaf derivative. When one of these asgumptions is valid

the integrals transform t i * o= !
m to either ka = f(tij 5;"Nj - ZAW N, )ds or ZATCk =
k

fZ(t dhu
ij 0x, N
git:Z:atﬁansfgrmsd region. The function g can be incorporated into the
nd, and the contour integral, except f h
o d = T faie e § P or the part on the crack face
1to a surface integral as in the elasti

i?ieiztiiral ZATSk has been discussed by Stonesifer and Atluri (?;82§.case.
. : atively under one of the above assumptions, by the same argument as
n the elastic case, [] (YAW dS) becomes either

3° MW Nk)ds where the contour integral is around the boundary

du,
ff(ti~ oy EAW 5.) @ (béxk dAu 06x
4) =0 (—Kygs A T el
3 o * ey T, OF e M09 Se (a_x_k)ds'
J o

T :
hese equal the surface integral parts of J;k and EATCk with g as 6xk

&x

fi; az elastic plastic material under complex loading, more than one crack
g Ebrametf; may be required to characterise crack tip conditions

ckburn (1985). In the contour integral context it is generall ’a d;
aigthat an important parameter is that identified by Rice and Druik z
(1967) as the integral over the boundary of what has subsequently bzzn

called the proces i

P s zone, of tiij = and b) that numerical robustness is
r:quired in evaluating this, and hence it should be done away from the
process zone. For_ _a homogeneous elastic material, it may be done by the

contour integral J which, f i
Wl ch, for the simple case referred to abo
independent and thus may be evaluated well away from the crack tzs’ 8

Alternative integrals for more complex condi%ions can be obtained by
replacing )M by other functi i

. ) ons, e.g. %tij o that the integral does
n?ttlnzolve past history but only the current gtress and strain, Blackburn
virtual crack extenmsion context there is a similar variety of p; sible
integrands V. They can be evaluated as [/ 2 (VdS) or [[f(t,. %ui - Vs
(1972 - N g jk)

)+ As noted by Blackburn (1985)

) ; » the contour integral YAT
associated with the cumulative history of stress and stfain.2 Iﬁlt;:

3 Xy 0Au
( ds o i. 0 *
- ) or ffZ(tlj = W éjk) (—X)ds, but the results

66x0 be 65x° ox .
will differ unless tij is i or dAvV ’
du dAu
o e
] ox 5

?iyazaki et al (1985? interpret the integral J of Kishimoto et al (1980)
wzzlznbelastic material in such a way that for this simplified case it
e ffti (eij dS) but they seem to evaluate it as if t; ; were the
J

odx
. ) du.
partial derivative of XAW with respect to _El.as is done here.
ox
i

zzr ;h;ee dimensional geometries, the contour integral methods may be
raightforwardly generalised to evaluate the integral on another contour
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in the plane normal to the crack edge, with a surface area integral over
the area in between. This can be done either directly or by using the two
dimensional g function to eliminate the contour integral part completely.
In both cases this gives a value of J_, at a specific point (usually a mid
edge node) on the crack edge. Alternatively, a three dimensional function
g can be used to give a weighted average value of J_; in the vicinity of a
point on the edge. This is done by choosing g to be 1 at that point and O
over a surface within the material. Then the integral over the part of the
edge within the surface of Jwi can be evaluated by a volume integral over
the volume within the surface. Usually g would be chosen to be non-zero
for only one or two elements along the edge, and independent of distance
from the edge as far as the transition layer of elements with nodes on the
internal surface on which g is zero. hen the crack tip meets a free
surface the singularity is such that J_; is either zero or infinite. An
average value over a length of crack edge can be determined however by this
last technique. Its value will depend on the length over which it is
averaged. Where the volume meets the surface of the body, the volume
integral must be supplemented by a surface integral either if the surface
is loaded or for components of Jwi that do not lie in the surface.

For an elastic material, the infinitesimal virtual cr%ck extension method

is analogous to the volume integral method with g as 3__.for a
X

transformation &x, which has the value &x  at the pointoabout which the
averaging has to ge taken. If this point is where the edge meets a loaded
surface, the work done by these loads must be taken into account. If &

is not in a direction is this surface, the difference between the IVCE
method and the volume integral method using g will involve ‘the integral of
g W on the projection of this surface in the x, direction, as well as of
that of the surface of the crack as, in the two dimensional case.

These considerations suggest that numerical inaccuracy will be the main
cause of any difference in the results from the infinitesimal virtual crack
extension method and from contour integration with or without g functions
in the case of single mode monotonic loading of an elastic plastic
material, provided the contour of integration is in a plane normal to the
crack edge. The computer program to be used must be adequate for the
loading considered, e.g. body forces are still to be incorporated in
PLOPPER (Moyser and Hellen, 1985). For most cases though, a choice is
available and the decision on the best method will be on the basis of
numerical accuracy. This will now be considered for the cases of mode 1
and mode II and mixed mode monotonic loading and for mode I cyclic loading-.

COMPUTATIONS

Numerical investigations of the various crack tip parameters have been
carried out by Hellen (1988) for an elastic plastic material using an
improved version of BERSAFE (Hellen and Harper, 1985) and PLOPPER (Moyser
and Hellen, 1985), and are here extended to various cases of displacement
controlled loading of a plate with a small central crack, the cases being
mode I, mode II, modes I and II, and repetitive loading. Further cases
involving thermal and mechanical loading of plane and axisymmetric
geometries are currently being analysed.

BERSAFE evaluates G; and G, by analytic digggrentiation of the shape
0 ( k)dS for 6xo at the crack tip
66x0 bxj

functions, as ff(tij Erl,- YW éjk)
X
k
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in the X

and X, directions, where the integration is over the crack tip
elements.

ime dependent material, BERSAFE

Yy At times a valae analogous
to the time derivative of J;k' The increment should be Atd Jwk when ZAW is

dt

du
a function of Egi.alone, as for example when elastic strains are dominated

creep. This is likely to be
crack growth, but the subsequ
related to integrals analogou

relevant to prediction of initiation of creep
ent rate of growth is more likely to be
s to ATcl’ Blackburn (1988).

CRACK

Fig. 1. Mesh representing half of plate
Blackburn (1986) has evaluated contour integrals around the tip of a
central crack of size 2a in an approximately square plate for a variety of
loadings when the crack size was a tenth of the plate width. A mesh
representing half the plate ig shown in Fig. 1. It consists of 96 elements
with vertex and midedge nodes. The 8 elements at the crack tip are special
triangular elements to take account of the elastic square root singularity
in the displacement. These elenents were 1/16th of the half size of the
crack. A condition of antisymmetry was applied to the displacements in the
Plane which bisects the crack. Displacements were applied to the other
boundaries which would Produce the following strains in the absence of the
crack: A temsile strain normal to the crack plane of 1/600; A shear
strain of 0.005; A tensile strain normal to the crack plane of 1/600, and
a shear strain of 1/400. With Young's modulus ZOOOOSOMPa and Poisson's
ratio 0.3 these would have given stresses of 1) i&—g—MPa tensile,

3
2) EQTQQQMPa shear, 3) liggg.tensile plus lgiggg.shear- The stress

plastic strain relationship used by Blackburn (1986) is retained, the yield
stress, Y, limit of pProportionality, being 240MPa. Contour integration was

around the forty elements nearest the tip. Integration along the crack
face was included for the mixed mode case.

The results of the contour integration,
parenthesis) with the g function method
method are presented in Tables 1, 2 and
final case the results are up to when th
convergence difficulties occurred.

both in the standard form and (in

> and of the virtual crack extension
3 for the three cases. For the

e whole plate becomes plastic when
For the first case, the results are
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Table 1. Jg; and G; for tenmsile diiplagemen
(ct stress in uncracked plate

2

o, /Y 3y J2. (MPamm) 6, (MPamm)  mac,’/E (MPamm)
0.133 .248 266 (.254) .250 .256
0.27 1.042  1.060  (1.073) 1.068
0.41 2,224 2.385  (2.455) 2.405
0.55 3.518  4.245  (4.378) 4.232
0.69 5.033  6.648  (6.906) 6.647
0.83 7.307  9.874 (10.31) 9.941
0.97  10.42  14.16  (14.79) 14.80
1.11  14.96  20.05 (20.91) 20.99
1.25  19.83  26.26  (27.41) 27.95
1.39  26.60  33.31 (34.72) 35.54
1.24  15.49  25.00  (26.39) 22.69
1.08 4.86  17.30  (18.67) 10.30
0.93  -5.10  10.25 (l1.64) -1.42
0.77  -14.23 4.17  (5.60) -10.96
0.62  -21.28 0.60  (2.09) -14.64
0.46  -26.63  -0.77  (0.81) -15.96
0.31  -25.53 1.45  (3.14) -14.97
0.16  -24.67 3.63  (5.47) -13.12
0 -21.27 6.53  (8.74) -10.03

16 -14.94  10.75  (12.79) -1.87
031 g1 1558 (17.47) 6.99
0.46  -4.08  21.07  (22.83) 16.52
0.62 7.85  27.20  (28.86) 26.60
0.77  15.95  32.70  (34.28) 33.19
0.93  24.07  38.04  (39.55) 38.40
1.08  28.66  41.12  (42.57) 41.58
1.24  30.01  44.00  (45.38) 44.53
1.39  29.60  46.61  (47.89) 46.88
1.24  18.37  38.32  (39.57) 33.52
1.08 7.77 3071 (31.94) 20.71
0.93  -2.17  23.75  (25.00) 8.56
0.77  -11.43  17.45  (18.75) -2.90
0.62  -19.38  12.90  (14.25) -9.25
0.46  -25.39  10.53  (11.97) -11.67
0.31  -28.18  11.65 (13.18) -10.90
0.16  -24.95  14.57  (16.22) -8.84
0 -22.06  17.54  (19.50) -6.02

-15.84  21.50  (23.29) 2.38

031 -8.95  26.09 (27.74) 11.52
0.46  -1.39  31.34 (32.86) 21.33
0.62 6.83  37.25  (38.67) 31.81
0.77  15.45  43.25  (44.60) 40.44
0.93  23.61  48.54  (49.83) 46.75
1.08  30.61  52.54 (53.78) 50.38
1.24  30.79  54.78  (55.98) 53.03
1.39  31.95  57.79  (58.90) 55.40

Figures in parentheses are obtained using g function
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also given when the displacements on the boundary are reduced to zero,
reimposed, reduced to zero and then brought back to their original value,

The analyses were carried out with 10 or 9 steps with 5% tolerance. For
each step a partial (80%) tangent stiffness method was used for the second
iteration (otherwise initial stress method). For the linear elastic case,
i.e. when the first Gauss point becomes plastic, the valEes arg included i
Tables 1 to 3 of G; (and for Table 3 of Gy), viz. ma(o,~ + 0g )/E and -Zss
[} Ut/E where o_ and o, are the shear and tensile stresses in the uncracked
piate. The haff cracﬁ size a was taken to be 16mm.

DISCUSSION

The close agreement between the values obtained for G, and JI under
monotonic loading is encouraging. For an elastic material, tﬁe results of
both of these methods, and of explicitly taking an energy difference for a
small increment in crack size should be the same, the small differences
being due to numerical inaccuracies. The same should be true for an
elastic plastic material under radial loading. If the loading is radial
only near the crack tip, but not elsewhere, the energy differencing method
will not be appropriate.

For radial loading near the tip, sources of numerical’inaccuracy for the
three methods are as follows, for an elastic plastic material: Energy
differencing loses many significant figures. If the value is required at
points on the crack, nt+l computer runs are required, all with an ad justment
to the onset of first yield to ensure that for the different crack shapes
and sizes, initial yield occurs at the same proportion of total load
Analytic energy differentiation gives rise to a large contribution to G
from those elements where some nodes are fixed and some are not. If, as in
the present investigation, these include elements near the crack tip, this
is the area where numerical accuracy is poorest. In particular, special
account of singularities should be taken by using special elements at the
crack tip; For contour integration in three dimensions, care is required
during mesh generation so to €nsure contours can be specified in planes
approximately normal to the points of interest on the crack edge. If only
an average value is required the difficulty can be reduced by using the
volume integral approach; The contour is usually defined through nodes,
where the stresses are usually less accurate than at Gauss points. This
problem can be avoided by use of a g function with integration at Gauss
points, The volume integral method of Li et al (1985), Shih et al (1986),
is equivalent to the virtual crack extension method for an elastic material
or for an elastic plastic material with radial loading over the area of
integration and any area within. Numerical difficulty has also been
experienced for approximately isochoric deformation near the crack tip,
when a surface integral adjustment is needed, as for thermal strains or
axisymmetric deformations when the errors in the hydrostatic component of
stress, which has little effect on the energy and hence can have greater
numerical inaccuracy than the other components, are becoming significant.

There is a greater discrepancy between G, and J;Z’ which neglects the
contribution from the crack faces in the crack tip elements. Fortunately
they are always less than Gl ard hence less important. In fact the CEGB
defect assessment procedure, Milne et al (1988), suggests that in some
practical cases of importance these may be ignored.
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% 5 displacement
Table 2. J and G; for shear
: (gl stress in uncracked plate)
s

2
J:l (MPamm) Gy (MPamm) naagg /E (MPamm)
0.1028 (0.1057) 0.1046 0.107
2.544  (2.668) 2.224
7.988 (8.655) 7.832
15.299 (16.643) 15.675
23.02  (24.98) 23.41
29.76 (32.23) 30.12
36.07  (39.06) 36.62
42.07 (45.51) A2.?4
47.93  (51.86) 49.21
54.16  (58.52) 55.30
60.22  (64.96) 61.43

* * ined displacements
Table 3. le, sz, G, and G, for combine p

(o. and o, shear and tensile stress in uncracked plate)
s t

2. 2 5 p=
* ¥ G na(o,“+o,“)/E 2macgo,
J J &y . :
/Y ol (PYem)  (MPYam)  (MPAmm) (MPamm)  (MBamm (MPamm)
.167

0708 .0818  0.1556  0.1068  0.1608 0.1344 0.169 0
' (0.1605) (0.1096)
.203  .234 1.434 0.869 1.277  0.921

(1.471)  (0.892) »
334 .386 4.029 1.825 3.667  2.28

(4.201)  (1.890) ,
.466 .538 8.687 3.486 8.101  4.74

(9.226)  (3.624) .
.598 .690  14.265 5.848  13.53  7.88

(15.182)  (5.965)

Figures in parentheses are obtained using g function

*
J
F reversed loading, there is a greater discrepancy'betweﬁn Géainsalzés
wﬁ;ch need no longer be identical. On repeated 1oad1ng,t;eecgc1e in Gy s
difference over

b Mt e iz agfee?gnt’ gEZr:his less varjation from cycle to cycle

ter than that in 1. S Ea
2zc:h§r::x:mum and the minigum of the values of J; than those of Gy

J

wl

These results are in general conformity with those oi'prezzo:sstationary
i tigations of contour integrals for repeated loading R |
gl gl kburn et al, 1977, Blackburn, 1987a and Wong and Jo a‘d noc,
. T éc 1 crack ;xtension results of Miyazaki et ali(%985) 1_ c .
chow 2 hystere is loop on reloading. Extensions to repetitive 1oad§ng o
Z:z:iighii:i;e:ave been reported by Brust et al (1986) and by Blackburn

(1987a,b).

AFR-3—F
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CONCLUSIONS

The infinitesimal virtual
crack extension (IVCE) meth i
od i
taking energy differences, particularly for three di io - e ke
non linear materials. AenacHEEL Beomcticles ot

For materials which may be treated as elasti €.g. no unload ng of an
c ( g 1
elastic plaStiC mate[ial)’ the 1nf1nites:-mal virtual crack extension method

method, for those three di i
. mensional cases where it i i
e ee is diffic
?niz iutFabl? for defining a contour around the tip, so thatuiﬁeto =g
mOdegIa 1§nI;s not in a plane normal to the crack edge, and also ?OHC?UI o
interesin : sit:ations as far as the out of plane component ig 1? mixed
. or mode I or II loadin I
‘ ) g of an elastic pl i i
L C plastic ma
onotonic conditions, the results are comparable and would Es:lzl U;der
s n elastic

element wide region.

Neglect of the integral over
the face of the crack ti
: eleme
iig:ific?ntly underestimate the contribution to that gomponegzs Eaﬂ
ontour integral which is normal to the crack plane i h, il
gonte P € 1n the mixed mode

For elastic plastic materi
als where cycling h
= g has occurred, ther
te:s:;ence ?etween the results of contour integration ané the 3ai? l%ttle
que with the same replacement of W by ZAW, as far as peak B,
concerned. However the variation in the values on unloading is values are
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