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ABSTRACT

Intralaminar cracking in composite laminates has been found to develop as a set of parallel cracks
whose average spacing reduces with increasing stress level or with increasing number of cycles of a
given stress amplitude. The average crack spacing has been found in some instances to approach a
minimum which has been interpreted as saturation or characteristic state. These features of the intra-
laminar cracking are predicted by the continuum model presented here. The model characterizes the
intralaminar cracking by a second—order damage tensor defined on a representative volume element of
the cracked laminate and describes the development of this cracking by the rate of the damage tensor.
The components of the damage rate tensor are treated as response functions subjected to the initial
material symmetry restrictions. An incremental solution to the rate equations shows that the crack
density is an exponential function of the strain and displays the experimentally observed characteris-
tics.

INTRODUCTION

Modeling of damage in composite materials has been undertaken by various authors. Most models
have been based on a micromechanics type approach which by its nature treats a particular composite
geometry and a particular crack geometry. (See, for instance, Laws, Dvorak and Hejazi 1983; Hashin
1985,1987; and Aboudi 1987). All these models have aimed at predicting stiffness changes in compos-
ites due to cracking and have verified the calculated change in the longitudinal Young’s modulus due
to transverse cracks in a composite. The agreement between the calculated and the measured values of
the Young’s modulus has been good for all models, indicating the lack of sensitivity of this property
to the details and assumptions of the models and thus not permitting a critical assessment of the
models.

The present author presented a continuum characterization of damage and incorporated it as
internal state variables in a constitutive theory of materials response based on the thermodynamics
framework given by Coleman and Gurtin (1967) (Talreja 1985). This approach provided three main
results which are not given by the models referred to above: 1) prediction of the changes in the initial
material symmetry caused by damage, 2) stiffness changes for all possible crack patterns, and 3) possi-
bility of formulating the damage evolution equations as an integral part of the theory. The stiffness
change prediction methodology was developed, illustrated and verified by extensive comparison with
experimental data (Talreja 1985,1986).

The damage characterization, which was initially based on vectorial variables, was generalized
to the second—order tensorial level and an initial attempt to treat damage evolution was presented
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(Talreja 1987).

Recently, other phenomenological approaches to composite damage modeling have appeared in
the literature (Allen, Groves and Harris 1987; Allen, Harris and Groves 1987; Harris, Allen and
Nottorf 1987; and Weitsman 1987).

The present paper will report continuation of the effort to treat damage evolution in compos-
ites initiated in Talreja (1987). It will be shown that a treatment of the damage rate tensor as a re-
sponse function, in the same way as other response functions such as stress and the Helmholz free
energy, leads to the result that the damage depends exponentially on strain in a load increment where
the stress—strain response is linear. An exploitation of this result shows that the experimentally ob-
served features of intralaminar crack development are in agreement with the damage rate equation
and that these experimental results can be interpreted in a new light.

THE DAMAGE TENSOR

A tensorial characterization of damage has been presented in Talreja (1987). However, for the sake of
completeness of the present paper, it will be briefly recapitulated here. Referring to Fig. 1 consider a
generic point P in a damaged composite. Consider now a representative volume element of volume

Fig. 1. A tensorial characterization of damage.

V about point P containing a number of damage entities. Let us assign two vectors a and n to
the surface S of a damage entity such that n is a unit outward normal to a considered point on S
and a represents, in some appropriate way, the "influence" of the point on the surrounding medium.
The "influence" is, at this stage, a conceptual entity whose manifestation depends on the materials
response characteristic under consideration at point P .

Let us define a damage entity tensor d which in component form is given by,

djj = J ajnjdS 1)
S

Assuming now that the total set of damage entities in the volume V-is separable into n
subsets, each representing a damage mode, ind denoting a damage mode by « =1,2,.n, let us
define a damage mode tensor given by, i

D(a)._. 1
o

Il M=

(dsj) ()
1 kg
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where k is the number of damage entities in the damage mode denoted by ¢« .
Decomposing a as

aj = anj + bmj , nimj =0 (3)
and assuming b to be negligible, the damage mode tensor is expressed as
1 n
{¥=1 = me& ()
3 k
ko=l L3 a

INTRALAMINAR CRACKING — DAMAGE TENSOR

The damage tensor (4) will now be expressed for intralaminar cracking in laminat:es. Consider a repre-
sentative element of a laminate shown in Fig. 2 having a parallel array of cracks in a p.ly of thlck!}ess

tc . The volume of the element is V = LWt , where L, W and t are the l.ength, width and thick-
ness of the element. The surface area of a crack is S = tcW/cosf where @ is angle between the

X

Fig. 2. A representative volume element of a laminate with intralaminar cracks.

fiber direction and the transverse direction. Assume, as a first approximation, the quantity a appear-
ing in (4) to be proportional to the crack length (i.e. the crac.ked ply thickness) and write it as a =
Ktc . The damage tensor (4) can now be written for intralaminar cracks as

2

Lo Kte . 5
Dyj = stcosd MM ®)
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where nj = (cosf, sinf, 0) and s is the crack spacing shown in Fig. 2. The index @ for mode has
been dropped here since we shall consider the intralaminar cracking only.

INTRALAMINAR CRACKING — DAMAGE RATE TENSOR

The damage tensors D(a) may be regarded as internal state variables in a thermodynamics frame-
work for description of the materials response. In the framework developed by Coleman and Gurtin
(1967) the temporal rates of the internal variables are taken as response functions. Alternatively, one
may define an internal dissipation potential as the work done by the thermodynamical generalized
forces conjugate to the internal variables (see, for instance, Rice 1971) and regard this potential as a
response function. The latter approach is commonly used where the internal variables are not found
amenable to physical measurements. In our case, however, the damage tensor components can be
specifically measured by nondestructive techniques, e.g. X—ray radiography. We therefore adopt the
Coleman—Gurtin approach and write the damage rate tensor components for purely mechanical re-
sponse as

648 = 50 o o0 0

where ek] is the small strain tensor.

We shall not treat the form of the damage rate tensors in a general case but only discuss the
case of transverse cracking in thin, symmetric laminates subjected to inplane loading since the experi-
mental data for this case is available.

Adopting the Voigt notation (ey; = eq , €22 =e€2,e33 = €3, 2ep3 = €4, 213 = e5, 2e19 =
€6 ; D1y = Dy, Dy = Dg, D33 = D3, D)3 = D4, D13 =Ds and Dyg = D¢) and dropping the
index for damage mode, (6) is rewritten as

l.)P = I.)P(eq,Dr) (7)
where p =1,2,.6 .

For transverse cracking we have 6= 0 in (5) and the only nonzero component of the damage
tensor is

2

= Dy = Bte
Di=Dy= pry (8)

The damage rate tensor (7) for plane stress becomes
Di = Dy(es e2,e3,e6,D1) : 9

The response function (9) must be restricted in form to comply with the initial material sym-
metry. Considering laminates with midplane symmetry the initial material symmetry is orthotropic
and the function (9) for this case must be expressed in terms of the orthotropic invariants (see, for
instance, Adkins 1959). Thus we have,

f)l = bl(el,ez,es,eg,Dl) (10)

Writing (10) as a polynomial function in its variables and restricting it to-quadratic terms in strain
and linear terms in the damage component, we have,
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].)1 = dg + diey + doez + dsze3z + d4Dy
+ dsef + dse% + d7e§ + dgeje2
+ dgeres + dioezes + dired + dizesDy
+ diesDy + digeaDy + disefDy
+ 163Dy + di7edDy + digererDi
+ dygere3Dy + daoegeaDy + d21e§Dy @11)
‘ i i i . A discussion con-
B oo of o coutanta ok for 3 otare work. We shall here attempt o
some general features of the damage evolution process from the phenomenological expression

e i
Consider first the initial conditions for (11). Requiring that the dfimage rate ble dzero foer il:liti-
damaged and unstrained state, we get do = 0 . Furthermore, let us require that, until damag

ates at a certain strain state, the damage rate is zero, i.e.
Dy =0 for Dy=0 (12)

is gi = = = = = = d =d10:d“=0, )
ves dy =dg =dg=ds =dg=d7 =dg 9 = di ) ] ) )
e Sincelexperimental data is only available for uniaxial loading of lan}lnatw in the lortnglt:;imal
direction (along x—axis), let us consider a monotonic stress 01 = 011 applied at a constant raf
;71 =1 . Since the stress is applied parallel to a symmetry direction there is no shear strain and (11)

reduces, with initial conditions, to

Dy = [d4 + digey + diges + diges + disef + diged
+ dy7ed + digetez + digere + dzoezea] Dy (13)
Let us now assume that the stress—strain response of a laminate is bilinear with the knee—

503 . . "
i i i i i 1 damage D? (given by the initial crac
t ing at a threshold strain e? at which the. Inl(:la age
g:::;it;cc;]l; =51 /s0) begins to grow. (See the schematic diagram in Fig. 3). The tangent modulus

beyond the initiation of damage growth is given by

Eg=d—al— , eg > ef (14)
dey
Writing now . ay 1y -
1= 4de; Ey
and using Vjp = —eg/er, and Vi3 = —eg/ey , (13) may be written as
b _ E&[d«a + (d12 — di3vi2 — d1aV13)et
Dy -
+ [dl5 + digVAa + di7vds — diginz — digts + d2oV12V13] J] dey
which on integration gives
2 3
tog 2t = Bl oot + At} + Bfebeh 1] a7)
ry
of
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where

1
A = 5(d12 — d13¥12 — d142413)
and (18)
1
B=§m5+mwﬁ+dnﬁ3—dmm2—dwm3+dmmww)

In integrating (16) V12 and 713 have been assumed constant in the range (D?,Dl) . However, in
general, Vj2 and V13 change with damage (Talreja 1986). Thus (17) may be used as a basis for an
incremental solution of Dy — ey variation with 42 and 143 calculated for the mean value of Dj
in each increment.

Using (8) in (17) with 7 = 1/s we see that the crack density is an exponential function of
strain. This is shown schematically in Fig. 3.

STRESS
CRACK DENSITY

e STRAIN e
Fig. 3. A bilinear stress—strain behavior with associated development of transverse crack density.
If the stress—strain response displays two knee—points, shown schematically in Fig. 4, then

using (17) in each range of constant tangent modulus, we see that the crack density evolves as two
exponential curves shown schematically in Fig. 4. In the general case of nonlinear stress—strain

STRESS
CRACK DENSITY

ep STRAIN e

Fig. 4. A trilinear stress—strain behavior with associated development of transverse crack density.
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response an incremental linearization shown schematically in Fig. 5 leads to !.he deva.zlopment of. the
crack density shown schematically in the figure in accordance with (17). An interesting feature is
observed here: the crack density tends to a saturation value as the tangent modulus decreases from.
increment to increment. This result provides a new and different interpretation of the crack saturation
process as compared to that given by the micromechanics analysis based on the local stress
distributions, e.g. the shear lag analysis.
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Fig. 5. An incrementally linear stress—strain behavior with associated development of transverse crack
density.

DISCUSSION OF EXPERIMENTAL RESULTS

Consider first the experimental results on transverse cracking reported by Kistner, Whitney and )
Browning (1981), Fig. 6. A graphite—epoxy (0,90)4s laminate has been tested'in lponotonic tension
in the 00 direction. The longitudinal stress — longitudinal strain and the longitudinal stress — trans-
verse strain plots as well as the densities of the transverse cracks in the central two— . o
ply thick layer and the outer one—ply thick layers are shown in the figure. The dotted lines indicate
the stress and strain at which initiation of the transverse crack growth occurs. The tangent modulus
following this is constant and in accordance with (17) and Fig. 3 the t:ransverse crack evolution is
predicted to be exponential, which is in agreement with the data in Fig. 6. )

Consider next the data on transverse cracking of a glass—epoxy (0,903)s laminate reported by
Highsmith and Reifsnider (1982), Figs. 7 and 8. In Fig. 7 two knee—points are indicated by arrows.
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Fig. 6. The Kistner €t al. data showing stress—strain behavior and associated transverse crack density
of a graphite—epoxy (0,90)4s laminate.
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(The discontinuity just be.fore: the second knee—point is assumed to correspond to this knee—point).
The transverse crack dt'ansu:y is shown plotted against the stress in Fig. 8. The data points are curve-
filt,tfd;{y t;voTehxpznenltlal curves, each corresponding to the straight—line region of the stress—strain
plot, Fig. 7. The development of transverse cracking thus displayed is in a, i i
predicted by (17) and illustrated by Fig. 4. d greement with the behavior
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Fig. 7. Stress—strain behavi i i i
ety rain behavior of a glass—epoxy (0,903)s laminate reported by Highsmith and
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