Computational Fracture Mechanics

H. LIEBOWITZ
School of Engineering and Applied Science, The George Washington
University, Washington, D.C. 20052, USA

ABSTRACT

The field of Computational Fracture Mechanics is reviewed. The paper
focuses on the impact of computational methodology on furthering the
understanding of fundamental fracture phenomena. The current numerical
approaches to the solution of fracture mechanics problems, e.g. finite
element methods, finite difference methods and boundary element methods are
reviewed. The application of these techniques to the problems of linear
elastic fracture problems is discussed. Particular emphasis is placed on
three dimensional problems and the issues involved with surface crack
geometries and stress intensity factor calculations.

Numerical solutions of two dimensional ductile fracture problems are
surveyed. A special focus is placed on the effect of stable crack growth
on the field quantities and the implications of numerical solutions for
fracture prediction. Creep fracture problems are discussed. The simi-
larities and differences between creep and ductile fracture problems are
highlighted. The importance of large strain phenomena and accurate
modeling of nonlinear effects are highlighted.

The current state of knowledge of continuum fields for elastostatic cracks,
elastodynamic cracks, ductile cracks and viscoplastic cracks is summa-
rized. The range of applicability of asymptotic solutions (especially in
the nonlinear regimes) is highlighted.

Major research needs in computational fracture mechanics are detailed.
Emphasis is placed on coupled theoretical and numerical approaches.
Prospects for future research trends are proffered. Application of
fracture mechanics and computational fracture approaches are explored.
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INTRODUCTION

The field of fracture mechanics has progressed significantly over the past
thirty years. Fracture mechanics nov provides a firm theoretical basis for
the prediction of fracture and the fracture-proof design of new structures
for many applications (most notably for applications with solely elastic
response). For other problems (where ductility or environmental effects
are present), fracture mechanics has progressed toward an understanding and
theoretical framework for the future. While much additional research is
required before fracture mechanics can be considered a mature discipline,
it is recognized that significant advancement has been made. Fracture
mechanics is based on the assumption of a continuum material behavior of
the structural component under analysis. The effect of atomic spacing and
material microstructure, therefore, is assumed to be totally represented by
the constitutive equations employed in the continuum model. Hence, this
assumption is the major limiting factor in the development of a quantita-
tive, cohesive theory of fracture. The ultimate theory of fracture should
attempt to couple the microscopic and macroscopic fracture characteristics
in a coherent manner. This task is a major requirement of future research
in fracture mechanics.

The advent of the digital computer mde it possible to solve engineering
and scientific problems by using numerical techniques. Many problems which
could not be addressed analytically could (at least in theory) be solved
numerically. As computers have becone faster, cheaper, more powerful and
more widely available, the number of problems which are addressed numeri-
cally has grown exponentially. The field of fracture mechanics has bene-
fited dramatically from the use of the digital computer. Routine use of
Linear Elastic Fracture Mechanics (LEFM) in fracture-proof design can be
largely attributed to the ability to solve fracture problems routinely
using digital computers. Critical technology problems involving material
and geometric nonlinearities have been addressed successfully using
numerical solutions. Indeed, many application areas would have been
significantly hindered (if not stopped) without the numerical solution of
fracture problems. In addition, much fundamental understanding of the
behavior of materials containing cracks has been gained through numerical
simulation of fracture problems.

The purpose of this paper is to provide a critical examination of the
impact of numerical methods on the field of fracture mechanics. For the
purposes of this discussion, fracture mechanics problems will be subdivided
into three major classes: Linear Elastic Fracture Mechanics (LEFM) prob-
lems (both static and dynamic), problems involving composite materials, and
ductile fracture problems (including rate dependent problems). These broad
topics represent the major areas of thallenge and application of the field
of fracture mechanics.

The paper starts with a discussion of the major numerical approaches
available for the numerical solution of boundary value problems. Emphasis
is placed on the Boundary Integral Equation Method (BIEM) and the Finite
Element Method (FEM). These approaches are the major methods employed for
the solution of fracture mechanics problems. Historical note is made
concerning integral equation methods and finite difference methods.
Emphasis in this section is on the strengths, weaknesses and successes of
the methods to date.

The problem areas of LEFM and ductile fracture problems are then considered
in turn. The emphasis in each section is placed on highlighting the impact
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of numerical solutions on the understanding of each problem area and the
application of the methodology to design considerations. Also considered
is the role of asymptotic and analytic ideal problem solutions in the
numerical solution of real engineering problems. An important issue is the
value of numerical solutions and the delineation of their limitations.

After surveying the major problem areas and their state of the art, the
discussion turns to the major needs of fracture mechanics and the role that
numerical methods can play in fulfilling these needs. The majority of this
centers on the role of computer simulation, visualization and the interpre-
tation of results. Emphasis is on coupling accurate numerical solutions to
physical insight and understanding. A very important concern is the
consideration of the numerical solution needs in the formulation stage.

The paper concludes with a discussion of the major obstacles and challenges
that face researchers in the numerical solution of fracture mechanics
problems. Coupling of numerical and theoretical advances and approaches is
emphasized. An attempt is made to focus on those issues which can shed

important light on the open questions in the field of fracture mechanics.

NUMERICAL METHODS FOR SOLUTION OF FRACTURE PROBLEMS

The problems of fracture mechanics reduce to the solution of boundary value
problems (which may be static or dynamic) which have mixed boundary condi-
tions. These mixed boundary conditions can give rise to singularities in
the stress and strain fields. The problems may involve both material and
geometric nonlinearities which complicate the formulation and render
prediction of convergence extremely difficult. Because little can be done
with these problems analytically, numerical methodologies are required.

The advent of large scale computers coupled with the rapid growth in the
field of algorithmic methods render many of the problems of fracture
mechanics tractable today.

The finite difference method is the oldest technique for the solution of
boundary value problems and was widely employed in the 1960s. The method
directly involves the solution of the governing differential system in an
approximate manner by subdividing the domain of interest into a connected
series of discrete points called nodes. These nodes are the sampling
points for the solution and are linked using the finite difference
operators to the governing equations. For example, the second order finite
difference operator for the second partial derivative of a two dimensional
field variable is given by

2
) % _ w(xi+1,yj) - 20(xg,y) F w(xi_l,yj)
I Ixg7y (%) 1

where U is the field variable and x and y are the independent spatial
variables. This is a second order difference operator and the error is
proportional to the square of the mesh spacing in x ( 0C Ax2) ).
Employment of the finite difference operators results in a system of
algebraic equations for the discrete nodal values of the field variable.
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Gradients can be evaluated by employing finite difference operators to the
discrete solution.

Finite difference methods can be used to discretize both space and time.

In addition, they provide easy error estimation techniques. Unfortunately,
finite difference methods are difficult to use for irregularly shaped
domains. Often absurd discretization is required for accurate solution.

In addition, it is difficult to implement meshes without equal grid
spacing. Convergence is difficult to gauge with this characteristic. An
excellent discussion of the finite difference approach to the solution of
partial differential equations can be found in Lapidus and Pinder (1982).

Finite difference methods have not performed very well for problems
involving singularities. One major reason for this is that the fine
meshing required near a singularity cannot easily be reduced for the rest
of the domain. Special finite difference techniques which directly handle
singularities can be developed; however, they have not been very successful
for practical applications. Computational requirements for convergence are
larger than for finite element and boundary element solutions. The finite
difference method is not seriously employed for fracture problems today.

In addition to finite difference methods, integral equation methods are a
historic approach to the solution of fracture problems and are still used
by some researchers today. The basic approach employed involves an
analytic formulation of the elasticity problem to the point of a singular
integral equation. The singularity is then extracted and the result is a
nonsingular integral equation which can be solved quite accurately with any
number of techniques. This approach yields excellent solutions, however,
it requires an extensive analytic formulation which is different for each
new problem. The method is quite useful, nonetheless, for establishing
benchmark solutions to compare with other methods as the degree of accuracy
can be guaranteed. The method is only applicable to elasticity problems
(no nonlinearities). For three dimensional problems, it is almost
impossible to derive the integral equations in a finite period of time. An
excellent discussion of the method can be found in Muskhelishvili (1953).

Two major numerical approaches are available for the solution of fracture
mechanics problems today: the Boundary Integral Equation Method (BIEM) and
the Finite Element Method (FEM). These techniques have been widely
researched and developed. For two dimensional Linear Elastic Fracture
Mechanics (LEFM) problems, either can be employed with much confidence and
accuracy. Both BIEM and FEM are actually a class of approaches with many
variants which allow a flexible approach for modeling many areas of
application. The discussion of each given below will focus on the methods
as they commonly are applied to fracture mechanics problems and the
variants employed by some authors for better solution characteristics.

The BIEM method is a numerical approach to the solution of linear boundary
value problems with known Green's function solutions. The boundary of the
domain of interest is discretized using "elements" which are interconnected
at discrete points called nodes. For a three dimensional problem, the mesh
is two dimensional; for two dimensional problems, the mesh is one
dimensional. The boundary value problem is formulated as an equivalent
surface or line integral using the Green's function solution and the
governing differential system. For linear elasticity in two dimensions,
the formulation is based on Betti's theorem and the resulting system of
equations is given by
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where uy and ty are the surface displacement and traction vectors,
is the domain boundary, and Ujp and T are related to the Green's
function solutions for displacement and tractions. At each boundary point,
either u or t is specified and the other variable is unknown. These relate
to the physical field variables in question. A complete discussion of the
approach can be found in Banerjee and Butterfield (1981).

The BIEM method is a quickly convergent, highly robust method for the
solution of linear boundary value problems. It is relatively easy to
employ and general purpose commercial software can be developed around the
method (the BEASY code is a widely available example; see BEASY in
References). Because the surface of the domain need only be discretized,
it is easier to use the BIEM than the FEM (to be discussed subsequently).
For static problems, the BIEM method reduces to the solution of a system of
dense linear equations which may be nonsymmetric (although methods of
symmeterizing the systems recently have been very successful). If surface
data is the only quantity required (as is the case in many fracture
problems where the only interesting results are the stress intensity
factors and the compliance), the BIEM is often computationally superior to
the FEM for two dimensional problems. If interior data is required, the
method is computationally costly. For three dimensional problems, BIEM
solutions are often very expensive as the resulting linear system is dense,
unbanded and often nonsymmetric. Ongoing research, however, is addressing
this problem rapidly. BIEM solutions often yield excellent results for
field quantities and their gradients (e.g. displacements and strains).
Primary unknown predictions on par with FEM solutions usually predict
better gradients within the BIEM concept.

For applications in fracture mechanics, the BIEM has received a good bit of
attention recently. For two dimensional problems, the BIEM can be employed
for the solution of fracture problems with much success. Mesh generation
is quite simple and users can master the techniques rapidly (much more so
than for the FEM). Accurate solutions can be obtained and reasonable error
estimates can be predicted. It is certainly competitive with the FEM if
not better for these problems. The numerical techniques employed for
fracture mechanics problems are summarized in Table 1.

Three dimensional LEFM problems have been solved using the BIEM without
great success. These solutions are quite costly and often do not produce
good solutions. As an example, consider the problem of an edge cracked
rectangular bar subjected to uniaxial uniform tensile stress as shown in
Fig. 1. The resulting stress intensity factor distribution is shown in
Fig. 2 and is compared with well established finite element results. It
can be seen that near the midplane the results agree well. Far from the
midplane, however, resolution degrades. Because it is well known that FEM
solutions of surface crack problems overestimate the boundary layer effect
near the free surface, the BIEM results are in error (Rooke et al., 1987).
Interior crack problems have been solved successfully; however, this is not
a sufficient test of the method. Ongoing research hopefully will address
this problem, although the BIEM is not a current competitor for three
dimensional problems.
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Table 1. Numerical methods for the solution of fracture

problems
Method Strengths Weaknesses
Finite Easy to employ Slow convergence
Difference
Error estimates available Uniform mesh requirements
Cannot model singularities
Finite Good convergence Modeling is difficult
Elements
Singularities can be Few exiting error
modeled estimators
Boundary Modeling is easier Computationally more
Elements expensive for most
Error estimation problems
is easier
Converge slowly for
singular problems
Hybrid Good for specific Usually developed for
Approaches problems restricted problem class
Generally very Often difficult to
accurate implement

|
{

(o

Fig. 1 Edge cracked rectangular bar subjected to
uniaxial uniform tensile stress
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Fig. 2. Variation of the stress intensity factor
along the crack front

Much effort has been focused recently on the extension of BIEM to nonlinear
problems where known Green's functions do not exist. This work is in its
infancy and it is fair to say that the approach has yet to impact the field
of fracture mechanics. Indeed, available solutions to problems with
extensive nonlinear material behavior are disappointing (e.g. Wilson et
al., 1985). Ongoing research may establish BIEM approaches to nonlinear
problems which produce reasonable answers. For nonlinear problems,
analytical Green's functions are not available. A variational approach
with assumed trial and weight functions must be employed. The formulation
is similar to that employed by the finite element method. The BIEM,
therefore, will have the same approximate formulation as the FEM.

The FEM is the most widely employed numerical method for the solution of
fracture mechanics problems. The formulation of the FEM is based on a
variational statement of the governing physics. For the problems of linear
elasticity, the principle of Virtual Work, given by

>

S oo,.8e.,.dV=1So0,. n, 6u, dS
g 1373 4

(3)

is employed where o, is the stress tensor, 6ejj is the virtual strain
tensor due to virtuai displacements Suj and n; is the normal vector to the
surface of applied tractions. The domain is discretized into subdomains
(elements) which are interconnected through common discrete points
(nodes). The primary unknown field variables are nodal values. The
formulation reduces the problem to the solution of a system of algebraic
equations in terms of the nodal variables (for dynamic problems, the result
is a system of ordinary differential equations). Finite element systems
tend to be relatively banded and symmetric for most problems. The
resulting systems can be solved using a number of techniques. For
nonlinear problems, algorithms are also available, however, accuracy and
convergence are much larger problems.

1893



For fracture mechanics problems, the finite element method can be employed
in the standard manner or modified to account for the singular nature of
the near crack fields. A summary of these methods can be found in
Liebowitz and Moyer (1987), and they are treated in this paper with
specific application areas. As discussed in the next section, calculation
of two dimensional stress intensity factors for LEFM problems is
commonplace and can be performed using commercial software by the average
user (any commercial code containing a quadratic displacement element, e.g.
MARC, ABAQUS, NASTRAN, ADINA can be employed). Indeed, this application is
the most successful example of the use of LEFM and FEM in design. For
three dimensional LEFM problems, it is often more difficult. The next
section discusses these issues in more detail.

A major problem with the finite element method is the design of an
appropriate mesh. While much experience has been gained in the past twenty
years, finite element mesh design (especially in three dimensions) is more
of an art than a science. Automated mesh design is still an emerging
discipline and all known algorithms produce unrealistic meshes for problems
containing cracks. Another major problem with the finite element method is
the prediction of error. This is an area where promising research is
ongoing, however, the current state of the art is not very accurate.

The FEM has been widely employed for the solution of nonlinear fracture
problems. Problems involving ductile crack growth, creep crack growth,
fatigue and large deformation can be addressed accurately using the FEM.
Often, however, these calculations are extremely time consuming and
expensive [for example, a modest amount of creep crack growth was modeled
by Moyer and Liebowitz (1987) and required 75 CPU hours of VAX 11-780 time
to reach a converged solution]. Understanding the results and establishing
converged solutions in the nonlinear regime is also more of an art than a
science. While much research is needed and ongoing, the FEM is a useful
numerical tool for addressing nonlinear fracture problems.

Of all the numerical approaches available, the FEM is the most widely
employed and understood method for the solution of fracture mechanics
problems. While the method continually evolves, the current state of the
art is sufficient to address many important problems. Much understanding
of fracture phenomena has arisen from numerical solutions of fracture
problems. The remainder of this paper examines the key areas in fracture
mechanics and highlights the impact of numerical methods (especially the
FEM) on the field of fracture mechanics.

IMPACT ON LEFM

The ability to predict accurately the stress intensity factors for cracked
elastostatic bodies using standard numerical techniques has greatly
advanced the use of Linear Elastic Fracture Mechanics concepts in
application. Both BIEM and FEM technologies have been developed for the
prediction of stress intensity factors for cracked bodies of arbitrary
geometry and loading. In two dimensions, this is a mature technology which
can be routinely employed. Most commercial FEM and BIEM codes have 2-D
elastostatic fracture capabilities built-in and automated. A minimal
amount of user knowledge is required.

The Griffith energy release rate theory of LEFM is widely accepted as a

design criteria for fracture proof design. The application of this theory
reduces to determining the largest possible flaw in a design which can
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exist in a subcritical state. If this flaw size is larger than an
acceptable flaw size, then the design is considered safe assuming that only
elastic deformation is present. The flaw size is determined by assuming
the existence of a flaw at a location of stress concentration and
calculating the energy release rate associated with a virtual extension of
that flaw. In practice, it is not necessary to calculate the energy
release rate as this can be related to the stress intensity factor of the
crack. It is sufficient, therefore, to obtain accurate numerical stress
intensity factors for arbitrary geometries and loadings.

The Griffith approach to fracture proof design is, unfortunately,
inadequate for many applications. Real structures and components develop
cracks which are three dimensional in geometry and which are not subjected
solely to tensile opening. The Griffith criteria requires that the crack
can be idealized as a two dimensional line of discontinuity and that the
remote loading is tensile and normal to the crack line. It is necessary,
therefore, to look beyond the Griffith criteria for many applications.

Often, anticipated cracks in components and structures form due to a stress
concentration near a free surface. This phenomenon gives rise to surface
cracks which cause many real world failures. In many cases, it is
acceptable to assume that cracks which will form are subjected to pure
tensile opening but cannot be idealized to a two dimensional line crack.

In this situation, the stress intensity factor along the crack front can be
used as a design criterion with acceptable safety for interior cracks. The
problem, therefore, reduces to finding the distribution of stress intensity
along a three dimensional crack front where the crack is subjected to pure
tensile loading.

The prediction of three dimensional stress intensity factor distributions
is not a straightforward process. Research in this area has been ongoing
for almost ten years in earnest (some work was performed prior to the late
1970s, however, due to the limited computer resources available, the
results were not accurate). FEM approaches are basically extensions of the
two dimensional technology presented previously. Special singular elements
have been proposed by Tracey (1973), Blackburn and Hellen (1979), Hilton
(1977) and others. These singular elements are based on employment of the
asymptotic displacement field in the finite element formulation directly.
The element geometry is the same as the corresponding standard elements
(usually either tetrahedrons or triangular prism elements as shown in Fig.
3). As analyzed elsewhere (Liebowitz and Moyer, 1987; Moyer, 1988), these
approaches require the assumption of a local state of plane strain near the
crack front which has not been established analytically. They must be
utilized, therefore, with discretion.

As a desirable alternative to special finite elements, Henshell and Shaw
(1975) and Barsoum (1976) noticed that distortion of the placement of
midside nodes in higher order isoparametric elements leads to a singular
strain in the element. The fifteen node prism with quarter point nodal
displacement is shown in Fig. 4. While many singular fields are
attainable, the square root singularity of the sharp crack is obtained when
the midside nodes of a quadratic element are displaced to the quarter point
on the element edge. This can be exploited in virtually any finite element
code with minimal user knowledge. The major drawback with the use of
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(a) 4 nodes

Fig. 3. Typical three dimensional tetrahedral and
prism elements N&14

Fig. 4. Quarter point element

quarter point elements is the requirement of post processing the stress
intensity factors from the FEM solutions.

Hybrid approaches to the solution of stress intensity factors in three
dimensions are discussed extensively in the literature (for example, see
the reviews in Liebowitz and Moyer, 1987 and Kuna, 1982). The basic
concept behind hybrid elements is that neighboring elements can have
different primary unknowns and can have different functional forms (e.g.
one element could employ and assume stress distribution while a neighboring
element employs an assumed displacement distribution). As suggested by the
name, many formulations of hybrid elements can be advanced. Geometrically,
hybrid elements are the same as conventional elements. Various authors
have employed hybrid elements to solve three dimensional LEFM problems.
Accurate and dependable solutions can be achieved using hybrid elements.
The complexity of their formulation, however, makes computational
implementation more difficult than with conventional elements. In
addition, because uniform convergence is not guaranteed even for linear
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problems, the use of hybrid elements is restricted to experienced analysts.

As stated previously, it is usually necessary to obtain stress intensity
factors from FEM field solutions. After much research over the years, two
approaches have emerged: the multi-term displacement field approach and
the nodal force approach. The asymptotic displacement field for a
stationary, three dimensional elastic crack assuming a local state of plane
strain is given by

1

b
g 14v, 21 8 .29
ul—( E ) (=) {KIcos 7 [(1-2v)+sin —2—] + K

. 6. 20
- 1Sin 512(1—v)+cos 7]}

I

1
o 14y, 2r. % 8 26 8 .28
uz—( 7 )(11 ) {K151n 7 [2(1-v)-cos EJ - KIICOS E{(l—Zv)—51n EJ}

1
9_, 1+v, 2r .8
U2 G Kppesin g (4)

The local coordinate system is defined in Fig. 5. The multi-term
displacement approach is the result of many years of numerical
experimentation with various asymptotic displacement formulations. The
method currently employed was formulated by Ingraffea (1980) and has many
followers. The multi-term displacement formulation employs the asymptotic
displacement field together with some higher order terms. Accurate
predictions are obtained if a local state of plane strain exists near the
point of stress intensity factor evaluation.
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Fig. 5. Three-dimensional crack geometry
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The alternative method is the nodil force approach. This approach was
proposed by Raju and Newman (1977) and is based on integration of the
asymptotic stress field given as

kl(s) kz(s) k3(s) &
g,. = £..(8) + g,.(8) + b .
SR oo F oo 5

where the functions f,g and h are known. It has been employed to solve a
wide variety of tensile opening problems. From a theoretical viewpoint,
the nodal force method is more acceptable than the multi-term displacement
method. The nodal force approach utilizes the asymptotic stress field
instead of the asymptotic displacement field. This approach, therefore,
does not require the assumption of plane strain in the neighborhood of the
crack front. Due to the assumption of local plane strain, the multi-term
displacement method can yield erroneous results where crack front
curvatures are large or as the crack front approaches a free surface.
Unfortunately, the displacement approach is widely utilized.

An alternative approach to the understanding of LEFM phenomena involves
calculation of energy release rates directly without the concern for stress
intensity factors. Stress intensity factors can be predicted from these
calculated energy release rates. For two dimensional problems, many path
independent integrals can be related (with certain assumptions as to the
direction of crack advance) to energy release rates and stress intensity
factors. The famous J integral (Rice, 1968) is one example of these. The
J integral is defined as

(6)

v Ju v
J = s - N 2V 21 29
{ . 0x 9x Txy 8x)dy w7 (Txy 9x + 0y ax)dx

where the geometry is as defined in Fig. 6. Although J is the most widely
employed path independent integral, which is related to the stress
intensity factors, many alternate formulations are available. From a
computational standpoint, choice of which path independent integral to
employ is made based on ease of computation for the geometry and loading
involved. Discussions on this approach for two dimensional problems can be
found in Dexter (1987) and Liebowitz and Moyer (1987).

Extension of global energy methods to three dimensional problems is
difficult, but not impossible. For pure mode I problems, two basic
approaches are available: the virtual crack extension method (VCEM)
(Parks, 1974) and the virtual crack closure technique (VCCT) (Newman,
1988). The VCEM works by calculating the change in stiffness produced by a
small amount of crack extension into the near tip material. The VCCT works
by calculating the energy required to close the crack by a small amount.
Both of these methods produce an estimate of the pointwise energy release
rate along a three dimensional crack front. Stress intensity factors can
be obtained, therefore, assuming either plane stress or plane strain. The
energy release rate calculation, however, does not require the assumption
of plane stress or plane strain. Because the standard LEFM fracture
criterion is based on energy release rate and not stress intensity factors,
these energy methods may be quite useful for three dimensional opening mode
fracture problems. The VCCT method has the computational advantage of only
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Fig. 6. Geometry for J integral calculation

requiring knowledge of the nodal forces and displacements. The computation
is not based on the stress or strain fields from the analysis. The VCCT
method can often predict reasonable results without the use of singularity
elements.

To demonstrate the capabilities of these techniques, consider the problem
of a semi-circular surface crack at the edge of a notch as shown in Fig.

7. This problem recently has been solved using the COD method, the force
method and the VCCT (Newman, 1988). The results are shown in Fig. 8 using
both singular and nonsingular finite element analyses. While all three
methods produce good results, the VCCT results are good even without the
employment of singular elements. This is the major advantage of the method.
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Global energy methods, unfortunately, are not very useful for mixed mode
problems. They require knowledge of the direction of incipient crack
growth. In general, this information is unavailable. Several mixed mode
crack direction criteria exist which could be employed to estimate the
direction of crack advance, however, the computational results are quite
sensitive to advance direction on the basis of experience with two
dimensional problems (Liebowitz ard Moyer, 1987). Application of these
methods to three dimensional mixed mode fracture problems is not expected
to be very successful.

The BIEM can be employed for the solution of three dimensional crack
problems in much the same way as the FEM. Much work in two dimensions
demonstrates that the BIEM can preduce quite accurate solutions to fracture
problems and is computationally competitive with FEM. For three
dimensional problems this may not be the case. BIEM methods tend to be
quite expensive for three dimensiocnal calculations, often much more
expensive than the FEM. In addition, studies to date have not resolved the
stress intensity distribution detzil for the standard three dimensional
surface crack problems used as berchmarks in three dimensions. Summary of
this work to date can be found in Cruse (1987).

In addition to the study of static LEFM problems, much work has been
performed for dynamic LEFM problens. In the dynamic case, two problems are
important: that of a running crack and that of a static crack with elastic
waves impinging. The problem of stress intensity factor calculation for
static cracks in elastic materials subjected to time dependent loading is
no more difficult than the corresponding static problem. The same solution
methodologies are employed and the results can be calculated to the same
accuracy. Computational requirements are greater, however, no new problems
arise numerically.

The problem of a running crack in an elastic material is much different
from the problem of a static crack. FEM solutions have had a major impact
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on this area. Few analytic solutions to realistic problems are available
(even in two dimensions), therefore, robust numerical approaches are
essential. The first realistic solution to the problem of a running crack
was presented by Anderson and King (1977). They introduced a nodal release
algorithm which models the changing boundary conditions of a growing

crack. The method has proved to be very robust and easy to implement -—-—
even in commercial finite element codes -- and is widely employed. This
algorithm has allowed many researchers to study running crack problems for
a wide variety of geometries and loadings. Many examples are available in
the literature; a good review is given by Williams and Knauss (1985).

For two dimensional running crack problems, the decision to employ either
conventional elements or singular elements is not totally established.
Many authors have produced excellent results to difficult problems
employing only conventional elements (e.g. Williams and Knauss, 1985).
Other authors employ singular elements with equal accuracy and claim
computational superiority (e.g. Liebowitz and Moyer, 1987). Many examples
exist in the literature, however, where one method or the other produce
marginal results to seemingly simple problems. These examples demonstrate
that the modeling of running cracks require careful study of solution
convergence and stability for each new problem. This aspect is probably
more important than the choice of element type.

An interesting example of dynamic crack propagation simulation involves the
problems of interacting cracks. Consider the problem of two cracks in a
sheet which are opened by wedge loads (Swenson and Ingraffea, 1987). The
geometry is shown in Fig. 9 where the arrows indicate the wedge loading.
The cracks are slightly misaligned to provide initial asymmetry. Figure 10
shows the cracks at three stages of the analysis. Initially, the cracks
repel each other and, as propagation continues, they attract. At the final
stage, the two cracks intersect. Figure 11 shows the stress intensity
factor histories as a function of crack length. The positive mode II
component is evident during the avoidance stage and the negative mode II is
evident during attraction.

Fig. 9. Geometry of problem
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Fig. 11. Calculate stress intensity histories

An alternative approach to modeling running cracks involves the use of a
moving element. Atluri and others have employed this concept in their
moving singular element studies (Atluri and Kathisesan, 1980). They use a
hybrid element which produces reasonable results. The main problem with
the hybrid approach is the complexity of formulation and the difficulty in
implementation. In addition, hybrid elements tend to behave unpredictably
in convergence studies, making their routine employment problematic. Few
authors have pursued this approach. Moving crack tip elements can be
formulated with standard elements. This has been done for the case of
ductile crack growth, but not for dynamic fracture. The computational
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requirements for moving elements, however, appear to be on the same order
as for standard approaches with nodal release (Moyer and Liebowitz, 1984).

To date, little work has been done on three dimensional dynamic problems.
The few studies in the literature employ numerical modeling too coarse for
the obtaining of accurate results. This is mainly due to the prohibitive
computational costs for three dimensional dynamic fracture calculations and
the lack of experimental data for comparison.

For problems of two dimensional LEFM, the FEM and BIEM technology available
today is sufficient for the solution of most problems. The convergence
nature and the computational requirements are well established, and routine
employment is feasible and, in fact, in place. For three dimensional
problems, however, much more research is required before routine analysis
can be performed. Specifically, the problem of the intersection of a crack
front with a free surface is still an open question. In addition, the
optimal methodology for calculation of mixed mode fracture parameters
(assuming the desired parameter is definable) is still open. Research in
this area is needed and discussed in depth in a later section.

PROBLEMS OF DUCTILE FRACTURE

Numerical methods have probably provided more understanding of the field of
ductile fracture mechanics than of any other discipline in the field of
fracture. Due to the extreme mathematical complexity of the problems,
analytic methods are able to provide only qualitative insight for very
idealized situations. Often, the physical processes of interest are lost
due to simplifications required for the attainment of an analytic
approximation. Numerical methods, therefore, are required for fundamental
understanding of the basic physical problem.

For the purposes of this discussion, ductile fracture will be divided into
four subtopics: elastic-plastic problems without subcritical crack growth,
elastic-plastic problems with subcritical crack growth, rate dependent
plasticity (or creep) problems without subcritical crack growth, and rate
dependent plasticity problems with subcritical crack growth.

The problem of elastic-plastic (rate independent) fracture without prior,
subcritical crack growth is the easiest problem to study. An extension of
the energy release rate concept to nonlinear elastic materials appears to
provide a suitable fracture criterion. Although computation times may be
long, two dimensional geometries can be analyzed quite accurately with
current FEM technology. This approach can be extended to three dimensional
mode I problems through the use of domain integrals. The energy release
rate for a stationary crack in a monotonically responding medium can be
written as (Shih et al., 1988)

2 2 (7)
_ 3ui qu aqk 9 uy Bui—au. 9 u,
T=1r [cija—_ - (WHL)5=+p (— = 1)qk
\Y% 9
X xj k at Bxk ot BXkBt
2
] ug oW
+ (0.,. w—5— - =—)q, ]dVv
9%, 9
ij xj xk axk k
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whefe W ig the strain energy density, L is the Lagrangian of the system,

uj ie the displacement vector and qp is a weight function. This
formulation holds for static and dynamic responses. The major limitation
is the required assumption of monctonic field response and a stationary
crack front. This parameter is useful for characterizing fracture which is
not preceded by ductile tearing or any non-monotonic load history.
Unfortunately, many real fracture problems do not satisfy these criteria.

An important problem for the prediction of the early part of fracture life
is the study of cracks subjected to mixed mode loading. The problem of
ductile crack solutions for mixed mode problems has been addressed
numerically by many authors in the past (e.g. Shih, 1974 and Moyer and
Haegele, 1988). No mixed mode ductile fracture criteria, however, have
been established, therefore, these solutions can only provide insight into
field distributions. While this is an important contribution, fundamental
work toward a general fracture criteria is needed.

A major problem in extending the current knowledge of ductile fracture is
the lack of understanding of the local crack tip (or crack front in three
dimensions) fields in the elastic-plastic regime. For two dimensional
problems with highly restrictive constitutive relations, an asymptotic
analysis has suggested fields in tie form

1 o1 ®
cIij = (ae o] JIr )n+laij(s) u:'L = (ae i I n+1rn+l ui(e)
yyn yyn
0
El_] B (as i Inr) n.H;:ij(e)

The required assumptions for the derivation of these equations, however,
are met only in a negligibly small region near a crack tip. Many numerical
studies over the past 15 years have demonstrated that these fields fail to
characterize the material response in physically realistic dimensions. A
recent study in three dimensions could not demonstrate a region in which
this solution dominates even on the plane strain plane (Parks and Wang,
1988).

To demonstrate the considerable complexity, a recent asymptotic study was
undertaken numerically. The near crack tip region was studied by applying
an elastic stress field (K dominant) to a region far from the plastic
zone. Various mixed mode loading ratios were studied. The resulting
stress, strain and energy fields were predicted for a power law hardening
material. Small strain theory was employed. This problem employed the
same assumptions and boundary conditions as in the asymptotic analyses.
The major difference is that the elastic response is not ignored. Figure 12
is a log-log plot of the effective stress ahead of the crack tip for
various mixed mode loading ratios. The mode I solution clearly delineates
the transition from the elastic to the elastic-plastic regime. In the
elastic-plastic region, the degree of singularity changes abruptly,
transitions for a distance, and thea continually increases toward the
asymptotic. For no reasonable dimension, however, is the asymptotic
solution demonstrated. For higher ratios of mixed mode loading, the
transition decreases and approaches the asymptotic for pure mode II. The
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Fig. 12. Full logarithmic representation of effective von Mises
stresses along line 6=0° for all of mixed-mode cases
considered ) )

assumption of geometrically infinitesimal deformatlops, powever, is )
violated for mixed mode loading as significant rotation is obse?ved. As is
demonstrated in McMeeking (1987), it is critical to assess the 1nf1u§nce of
finite deformations before an understanding of the near tip stress fields
can be obtained.

Most ductile fracture problems exhibit significant stable crack growth )
prior to final instability. The simplest problem of a mgde I crack growing
in a plane strain material yields a significant mathematical problem.
Analytic attempts at asymptotic solutions produce dubious results at besg.
This is easily understood as the assumption required to attain the so}utxon
restricts its possible validity to a region so small that the assgmpt1on of
a homogeneous, isotropic continuum must be suspect. Fo? thg static crack
problem, the HRR field is often restricted to a zone which is of the order
of the physical process zone (Dean and Hutchinsonz 1980). Be§ause
asymptotic solutions for growing cracks are restrlgted to regions (on the
average) of between 1/5 and 1/10 of the corresponding HRR region, the
solutions are not very useful.

Fortunately, the problem of stable mode I crack growth has been exten§ive1y
studied numerically over the past ten years. The nodal release algorithm
is most frequently employed for the modeling of crack growth. Early
investigations yielded qualitative insight into the effect of crack growth
and local yielding on field variables relatively far from the c;a§k (e.g.
Dean and Hutchinson, 1980, and Hoff et al., 1986). These quantities were
often '"matched'" with asymptotic solutions to construct a '"full near field"
solution. As large-scale computational facilities have increased, howev§r,
more sophisticated numerical studies have demonstrated that the asymptotic
fields are not observable at finite distances from the crack. Instegd, a
continual transition is observed from the crack tip to the elastic field
(assuming free surface effects do not complicate the phenomena). Fracture
criteria based on assumed asymptotic dependencies, therefog;( are not
expected to be successful. The interested reader is referred to Dodds and
Read (1988) and to Moyer and Kunze (1988).
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To evaluate crack growth criteria, numerical simulation of experimental

iR FRAiiies in sewial ieleans approaches, several authors have proposed
Such simulations, however, must employ the raw

Meiikg cras dip weshes with the changing boundary conditions modeled i i i
il s : . : 5 . histories are required.

:;;:;;iisme:&;f;;§§::’§:,?3:‘b::: zt:gfed MEing DAtk Hyboid elements and experimental datg as the only input without the bias of the fracture
;iaﬁ;‘ (§!qm,;§aﬂ among al(orithmsauszsgs:gﬁvésggognf M?yer and Liebowitz, parameter being studied. Few such simulations have been performed to
deminal rated that both the nodal release and the mov?n elements has date. A recent study, however, followed these criteria for a common steel
provide good, convergent solutions to bl ing crack elemerits material (Moyer and Kunze, 1988). The results indicate that the dJ/da rate
Unfor(ﬂnitel; $h addadl Conp] teattos p;of ems of_ductlle crack.growth. is not constant over any reasonable proportion of crack growth in a
approach yields no significaﬁt computa:ion:;m:éjzggg of the moving element standard test specimen. The J integral versus the crack extension is
comparisons for hybrid elements are not currentl avg?f.b151m11ar plotted in Fig. 13, and the crack tip opening angle is plotted against

y 1table. crack extension in Fig. 14. For large amounts of crack growth, the crack
Crack growth i i : : - 3 opening angle appears to be approaching a constant value. A more stable
Categogies: Eé;;:r;:sggro;hzlzgg?Lfn::a:1?5 regime can be divided into two pgrameier ippeagz to be the sggpe of tge crack tip opening displacement
local crack tip parameters. It has beeﬁ : app:ogcyes and those based on . versus crack extension curve (Fig. 15). For large amounts of crack growth,
the early stage of ductile fracturs is chagggizrﬁze;nbthe literature that the curve becomes extremely linear. Even in the short growth range, the
rate and that subsequent growth is characterized b Y a :onstant dJ/da linearity is reasonable. Unfortunately, any crack opening parameters are
opening angle (Hoff et al., 1986). Man Ghies .Z a_co;s ant crack quite sensitive to the choice of definition. It is impossible to obtain an
however, they have been insufficientl ) dcr% eria have been proposed; unambiguous and specimen independent definition. Employment of these
their utility. Stable crack growth Cgi:Z??zrsurrézzlexgirizens ;o asses criteria, therefore, is limited to a modeling role and should only be
prediction of ductile tearing are summarized in Tabley2. e or the emptoygg u?;iésiagii;gédfield variable based, local crack extension

criterion 1 .
180

Table 2. Summary of ductile crack growth

theories 1.60
. ‘ E 140
Criteria Type Comments E
Tearin G ,
ing lobal Contrary to experim i 2
s y p ent for most materials S oo
When applicable, range is extremely limited J 0.80
< g
Cracg—t1p Local Definition is arbitrary &
Opening £ o
Displacement Difficult to measure and verify = 0.40
C - - - é ‘
racg—tlp Local Difficult to measure and verify
Opening o
Angle Definition is arbitrary 000 : - - I l ; I I
{ Seem 000 100 200 300 400 500 600 700 800
rain Energy Local Untested in applicati
Scrain Enerey op Ton CRACK GROWTH Aa, mm
Material parameters difficult to determine Fig. 13. J-integral vs crack growth
Plastic Energy Global Parameters are i
rremand specimen dependent Similar trends can be seen in the literature regarding rate dependent
fracture problems. A wide class of applications involves materials which
Stochastic Usually Parameters are non-physical radies have been succossEul ot ovtaining sceurate Serurions: The most
Kopronates Toeal phy studies have been successful at obtaining accurate solutions. The most
BEERcuTE 5 veiif . . widely studied rate dependent problem is that of secondary creep (both in
rify for application the transient and steady state conditions). Static studies have been

performed historically; however, as in ductile fracture, most problems of
interest involve stable crack growth. Stable crack growth in a creeping
solid has only recently gained attention in the literature. This is
primarily due to the extreme run times required to study problems of
interest. The available studies, however, indicate the same trends as for
rate independent materials (e.g. that the asymptotic predictions hold
primarily for stationary cracks, and that growing crack asymptotics are not
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shasived at filnite distances; ses Hawk and Bassani, 1986 and Moyer and
Listawite, 1987,
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Fig. 15. Crack tip opening displacement vs crack growth

An important aspect of ductile fracture which is starting to receive
attention by researchers is the effect of finite deformations on the local
crack tip fields. The existence of significant yielding indicates that
strain and displacement fields c:nnot adequately be assumed to be
infinitesimal. For both rate independent materials and rate dependent
materials, recent research has revealed that finite deformations
significantly effect the local stress and strain response of the material
(McMeeking, 1987; Moyer and Liebowitz, 1987). Even for a static crack,
significant effects can be observed (McMeeking, 1987). Because fracture
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criteria for stable crack growth will probably involve local field
quantities, studying the effects of finite deformation will be imperative.
This is even more important for criteria based on local crack opening
characteristics. While geometric nonlinearities often increase
computational costs, if the local crack region is modeled with a very fine
mesh, the large displacement problem may be cheaper to solve as the field
may not be singular (as in the infinitesimal theory problems).

An interesting comparison between the asymptotic two dimensional, plane
strain fields in the transient, power-law creep problem recently has been
studied (Moyer and Liebowitz, 1987). In this problem, the short time
solutions were examined while crack opening was still small (so that the
asymptotic fields would remain dominant). Figure 16 shows the von Mises
stress ahead of the crack tip. The problem was solved numerically using
both small and finite strain theory. The problem parameters were chosen so
that the transition zone would be negligible and an abrupt transition from
the elastic to the creep singular zones would occur. The agreement between
the small strain finite element solution and the asymptotic solutions
demonstrate this effect. The large deformation solution shows significant
differences even for this problem in which deformations are quite small.
The elements very near the crack tip experience large enough strains that
the entire singular field is influenced. This preliminary study clearly
indicates that, as in the elastic-plastic case, finite strain analysis is
required to understand ductile and creep fracture problems.

—— ANALYTIC SOLUTION
FOR STATIONARY CRACK

LOG (o)
T

LARGE STRAIN FINITE
- * ELEMENT SOLUTION FOR
CRACK GROWTH PROBLEM

0L 1 tiin L1 11l
-2 -1
LOG (r/a)

Fig. 16. Log-log plot of asymptotic effective stress ahead of
the crack tip after crack growth (P-1500 1b)

Three dimensional ductile fracture studies for stationary cracks are
starting to appear in the literature. As mentioned previously, the domain
integral approaches are being explored for fracture characterization in the
absence of stationary crack growth. The advantage of the domain integral
approach is that local solution state need not be accurately represented or
predicted. Unfortunately, the local state is the important issue. Current
literature is starting to address this problem, however, this work is in
its infancy and no conclusions are validated to date.

Numerical solution of ductile crack growth problems provides the
opportunity for full field simulation of a complicated physical
phenomenon. Laboratory experiments, while extremely important, cannot
provide the full field data required to establish a fracture theory to

AFR-3—B
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prfedict atable crack growth. Numerical simulation holds great potential

for this use. As discussed subsequently, the need for development of local

stable crack growth criteria and their testing by numerical experiment (or
computer simulation) is one of the major requirements of current fracture
research. FEM solutions should provide the tool to address this research.

SUMMARY OF THE STATE OF KNOWLEDGE NEAR CONTINUUM CRACKS

To fully understand the fracture of solids from a continuum scale, several
pieces of knowledge are required: the field variables must be known near
the fracture point (stress, strain, displacement, strain rate, etc.), the
thermodynamic laws governing the fracture processes (e.g. stable tearing,
ductile rupture, brittle rupture) must be known and the coupling of these
must be understood. The theoretical models of the constitutive and
fracture behavior of materials must be postulated, understood and verified

for real materials. Numerical methods can aid in this process by obtaining

solutions to mathematical problems which cannot be solved in closed form;
however, numerical solutions camnot provide any information as to the
accuracy or validity of postulated theoretical models.

In two dimensions, the asymptotic nature of the field variables is known
for elastic materials, as was discussed previously (Egs. 4 and 5). These
are accurate near the crack tip, and the body geometry influence is

described by the stress intensity factor. If the crack is near enough to a

geometrical boundary, however, the above relations do not adequately
describe the stress state (see Fig. 5). Because this rarely occurs in
applications, it does not represent an important problem. For two
dimensional, plane strain fracture, knowledge of the stress intensity state
is sufficient to predict the onset of brittle fracture. The failure curve
(in stress intensity space) is geometry independent and accurate
predictions can be made.

For elastic-plastic materials which do not exhibit stable crack growth
prior to ductile instability, the local field parameter response is given
in Eq. (8) for a power law hardening material. For other simple
constitutive relations, similar expressions can be derived analytically.
These solutions are two dimensional (either plane stress or plane strain).
The loading must be monotonic and no large strain effects can be present.
When all these criteria are met, the asymptotic solutions are valid but
only in a very small region near the crack tip. In many applications, they
are not valid beyond estimates of the process zone size. The utility of
these relations, therefore, is extremely restricted. Under these very
restrictive assumptions, the J integral represents the energy release rate
for mode I failure and can be employed a- a fracture criterion. In most
applications, however, this is a poor approximation.

For stationary ductile cracks, numerical solutions exist which describe the
local stress, strain and displacement fields. Small strain solutions have
been used to study the transition zone between the highly restrictive
ductile asymptotic zone and the elastic asymptotic zone. Typical mode I
yield zones are shown in Fig. 17. This work has been done for both mode I
and mixed mode problems in two dimensions (e.g. Shih, 1974; Moyer and
Kunze, 1988; Moyer and Haegele, 1988). The transition zone is the region
which probably characterizes the local state most accurately and is the
region fracture criteria must address. To date, however, the only local
fracture criteria for two dimensional ductile tearing are based on crack
opening profiles or strain energy density arguments (e.g. Moyer and
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Haegele, 1988; Sih, 1985; K. Hellen, 1984). Crack opening criteria are
difficult to employ due the fact that these quantities are difficult to
measure or precisely predict in an unambiguous manner. More research in
this area must be performed to accurately compare numerical and
experimental predictions under controlled growth conditions.

Fig. 17. Shape of the ideal-plastic small-scale yield zone in
plane strain, mode I.

Strain energy density approaches for the prediction of ductile crack growth
have been proposed for many years. While a large body of literature ?as
grown in this area, little in the way of experimental verification exists.
The primary reasons are that the material properties in the formu%at19n are
difficult to obtain and the approach is highly sensitive to constitutive
and large strain assumptions (Sih, 1985). Recent work seems to indicate
that ductile tearing is an essentially three dimensional process and that
two dimensional approaches (such as crack opening profiles) may not be able
to predict ductile fracture. Strain energy density approaches are
attractive because they address the problem of element fracture without
unnecessary assumptions concerning global response. Much more work in
comparing predictions with experiments is required to establish or nullify
the approach.

A third local approach to predicting fracture employs continuum damage
theory. A constitutive model of a postulated damage parameter is proposed
as a function of local stress, strain, strain rate and deformation. A
typical damage evolution equation can be given in the form

i (9)
D=f (g, g, €, D)

where D is the damage parameter. The equation is integrated over the
loading history and the damage law predicts the material failure
dynamically. This approach is being widely researched in Europe and
appears promising (Chaboche, 1987; Benallal et al., 1987). Unfortunately,
continuum damage is largely ignored by American fracture researchers.

The most common approach to addressing ductile fracture in the United
States is through the use of global integrals. The J integral was the
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fisai 1o be employed for fracture resistance characterization in the
dustile region, Unfortunately, the predictions are far from observed
material response unless the loading is very near the brittle range. Crack
grovth and ductile rupture canmot be predicted accurately. Alternative
integrals have been proposed which address the restrictions of the J
xnfegral to some degree. Unfortunately, none of these address the material
failure or load history problem. In addition, the global integral
app;oaches require unrealistic proportionality assumptions which are not
Yalld for ductile tearing. In spite of the lack of success, much research
is focused in this area. It is interesting that research on global
1ntegra} approaches to address ductile rupture has been largely abandoned
except in the U.S.

The problem of fracture at elevated temperatures is very similar to the
problem of ductile tearing. Many similarities between viscoplastic and
elast?—plastic fracture can be observed in fracture data. For extremely
restrictive constitutive models, static crack asymptotic solutions
analogous to equation (8) can be established. For example, for steady
state power-law creep, the stress and strain rate fields are given by
(Reidel and Rice, 1980)

1/n+1 (10)
o, = &) 5, . (6
ij BInr 15
n/n+1
. c(t
e = 8 (o)
ij BInr ij
where
3. (11)
C(t) = Lim f () o, .¢ = e
o0 o W %istey ¥ T Ty oy

Unfortunately, creep fracture always exhibits stable crack growth prior to
catastrophic failure. These solutions, therefore, have little utility.
Early work in creep fracture attempted to employ global integrals to the
prob}em of predicting creep crack growth. As with the J approach in
ductile failure, global integrals were not successful. Little additional
work has appeared in the literature with the exception of some recent
continuum damage predictions (e.g. Walker and Wilson, 1984; Chaboche,
1987). This work is promising but not yet mature. To date, strain energy
approaches have not been applie¢ to viscoplastic problems.

For three dimensional brittle geometries, the deformation and stress state
near t@e crack front has the same asymptotic form as for the two
d1mgn§1onal case. The stress intensity factors vary as a function of
?osxt1on §long the crack front. This solution holds except near the
intersection of the crack front with a free surface. The dimension of this
"boupdary layer' region and the nature of the fields in this region have
rece%ved much attention with little conclusion. Work on this question is
ongoing and recent studies —- both analytically (Folias, 1988) and
numerically (Cruse, 1987) —— are beginning to provide qualitative insight.
Resolution of this problem is still pending.

1912

Prediction of brittle failure in three dimensions is accomplished using
pointwise energy release rate predictions. This approach works well for
many practical problems provided the crack extension is planar (as is the
case of pure mode I, II or III or for combined modes I and III). For
noncoplanar fracture problems, however, the issue remains open. Further
research is needed in the area of three dimensional mixed mode brittle

fracture.

For ductile problems, as indicated previously, the prediction of fracture
may be inherently three dimensional for all problems. This could explain
the lack of success of the current approaches in the literature. The
deformation and stress state near a three dimensional ductile crack front
is just now being studied. Due to the difficult nature of three
dimensional nonlinear problems, little analytical work exists to address
this problem. Because large, high speed computers are becoming more
available, three dimensional ductile fracture problems are being addressed
by many researchers. Preliminary results (e.g. Parks and Wang, 1988; Moyer
et al., 1986) indicate that two dimensional asymptotics do not dominate the
near crack region in three dimensions. As suspected, large strain effects
appear important and must be modeled. The problem appears very complicated
and much additional research is needed. Fortunately much work is ongoing.

Dynamic fracture phenomena (where inertia effects are important) constitute
an important problem in many applications. The two dimensional brittle
fracture problem is well understood for the dynamic case. The dynamic
stress intensity factor represents a valid fracture criterion in this
regime. The asymptotic deformation and stress fields have the same form as
in the static case except that the stress intensity factor becomes time
dependent. For example, a mode I crack running with speed v has the
asymptotic stress field given by (Williams and Knauss, 1985)

K(t,v) (12)

948 = s faB(e’V)+O(l) o, = 1,2 as >0

where r and 6 are the polar coordinates centered at the crack tip.
Material fracture resistance is well understood for brittle dynamic
fracture. In three dimensions, crack front energy release rate is employed
analogous to the static problem. Limited experimental verification
indicates that this approach is promising.

Dynamic ductile fracture has received some study; however, little progress
has been made in the prediction of fracture phenomena. No asymptotics
exist for this problem and little is known about the nature of the
deformation response. Numerical studies have simulated experiments
reasonably well, although no fracture prediction methodology has resulted.
The fields near the crack have not been studied adequately. Some three
dimensional work exists; however, this work has focused on global,
qualitative comparisons. A recent study focused on determination of the
region where the HRR field given by (Parks and Wang, 1988)

1
n+l ~ _ _HRR
cij(r,o) > 9, .[J/(aeocolnr)] . oij(O,n) = Gij
n (13)
o+l -~ _ HRR
eij(r,O) > aso.[J/(anGOInr)] . eij(O,n) = Eij
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This study demonstrated little dominance when the plastic zone was not
n?gliggble relative to the crack dimensions. The field of three
dimensional, dynamic ductile fracture is a new frontier.

In general, asymptotic relationships, where applicable, characterize
fragture fields and provide the necessary fundamental understanding. When
their applicability breaks down, however, little understanding exists. As
an‘example, the problem of two or more interacting cracks demonstrates
this. As long as the crack distance separation is large enough, the
asymgtotxc solution is sufficient and the stress intensity factors relate
the 1gteraction information (Sih, 1978). If they are too close, however,
the f?elds are unknown. Little work in this area (either experimental,
§umey1ca1 or analytical) has been performed. In light of recent interest
in micromechanical modeling of fracture processes (e.g. void nucleation,
void coalescence, crack-void interaction) this is an important issue which
warranFs‘further research. At the moment, no uniform method for
determ1n§ng the extent or validity of asymptotic solutions exists. The
asymptotic behavior of the near-tip stress strain and energy fields for all
fracture regimes are summarized in Table 3.

Table 3. Near crack field singularities

Problem type Stress Strain Energy Comments

2-D Elastic 1/v/r 1//r 1/t Exact asymptotic
solution

3-D Elastic 1/V/r 1/Vr 1/ Restricted to interior
domain

2-D Nonlinear  -1/n+l 0/t 1/r Applicable region very

Elastic small - limited plastic size
and constitutive behavior -
limited to monotonic loading

2-D Creep r—l/n+1 r—n/n+1 1/r APp%icable region very small -
limited creep size and
constitutive behavior -
limited to monotonic loading

3-D Nonlinear ??7? 2?2 222 Unsolved to date elastic
analytically - numerical
solutions forthcoming

2-D Plastic 232 722 227 Unsolved to date

with chal analytically - numerical

Unloading solutions forthcoming

3-D Plastic 222 222 222 Unsolved to date

with Lgcal analytically - numerical

Unloading solutions forthcoming
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APPLICATION OF FRACTURE MECHANICS

Fracture mechanics has found a wide variety of applications over the

years. The design of aircraft structures, aerospace structures,

submarines, ships, land vehicles and civil structures employ fracture
mechanics based rules in the design code standards. An excellent review of
this topic can be found in Hellen (1987). For emerging disciplines, the
characterization of fracture resistance (or fracture toughness) is a
demanding and challenging extension of the technology.

From a fracture mechanics standpoint, the field of composite materials has
many open questions with regard to theoretical issues. Numerically,
however, linear elastic composite problems can be solved quite accurately
using FEM or BIEM, albeit, often at great computational expense. The field
of theoretical basis for composites needs to be greatly expanded before the
numerical needs can be established. For the time being, the problems of
interface cracks, free surface cracks and laminate interface modeling will
occupy much numerical research effort. These problems are soluble with
current technology; however, much effort will be required.

An important problem area where fracture mechanics finds application is in
the prediction of fatigue crack growth rates and fatigue life. A full
discussion of the problem of fatigue is beyond the scope of this paper. It
is important to note, however, that while fracture mechanics approaches to
fatigue crack propagation have been used for twenty-five years, only
problems involving relatively long cracks in long-life (high-cycle fatigue)
materials can be adequately addressed with these approaches. Work is
ongoing and promising in this area, especially approaches based on local
energy criteria. Unfortunately, the level of effort on this problem is not
commensurate with its importance. More effort and funding are required in
this important area as the majority of real world failures and component
retirements are due to fatigue.

An area in which fracture mechanics technology is currently being tested
for applicability is the simulation of metal cutting. For the prediction
of tool wear, safe cutting speeds, optimal cutting depths, etc., it is
desirable to have a predictive technology to determine the stress and
strain fields arising from the process. While work in this area is
complicated due to dynamic, thermal and strain rate effects, promising
research is underway. Examples of this work can be found in Strenkowski
and Carroll (1985).

Fracture mechanics has been successfully applied to the failure
characterization of ceramic materials for many years. An excellent review
of the fracture of ceramic materials can be found in Bradt et al. (1974).
Ceramics often exhibit viscoelastic and anisotropic material behavior
complicating their analysis; however, because they tend to be brittle,
energy release rate predictions tend to characterize fracture quite well.

An area of active research in mechanics and material science is in the
processing and performance characterization of thin film coatings. Coating
base materials can provide increased strength and tribological properties
for engineering components. The coated material often has superior
performance capabilities to the base material alone. Fracture
characterization of thin film coatings is receiving attention by
researchers. Several approaches to fracture characterization have been
proposed and are under study. Promising results indicate that methodology
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G mwswus® fraciuie ioughness awl cohesive properties should be available
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&% sewiisatien of ihin fiim technology which is currently receiving much
Sidgaiion is the depoaition of superconducting thin films. Mechanical
shavasiasization of superconducting thin films is complicated by the
Semgeiature sensitivity and anisotropy of these materials. Technology
dgveioped for characterizing room temperature thin films should be
#stensible to liquid nitrogen environments. Orthotropy in the coatings'
mechanical properties, however, is an issue requiring further research.

Recent research on thin film technology has led to the development of
nanostructured thin films. Typically these coatings are constructed of two
materials alternately layered. The total coating may consist of as many as
500 layer pairs with layer thiclness on the order of 10 angstroms.
Different layer thicknesses and volume ratios, produce varied material
properties. The nanostructuring of these coatings often yield mechanical
properties superior to those of a single material of equivalent coating
thickness. Research is ongoing to determine optimal layer spacing and
proportions for fracture resistince, tribological properties and strength.
Current research indicates that single coating film techniques for fracture
toughness determination may be zpplicable (with appropriate modifications)
for the characterization of nancstructured thin films (Moyer et al., 1988).

Application of fracture mechanics principles and extension of the theory to
emerging material technologies is one of the most challenging tasks for the
field. Due to the complexity of the arising applications, computational
approaches increasingly will be employed. Vigorous research is needed in
these areas. Preliminary indications are that fracture mechanics will
provide a framework for the characterization of many of these emerging
applications.

FRACTURE MECHANICS RESEARCH NEEDS AND THE ROLE OF NUMERICAL
ANALYSIS

Research needs in fracture mechanics are quite varied and still pose
formidable tasks for engineers and scientists. The failure of isotropic,
brittle materials is well understood today. Existence fracture theories
for mode I failure are well established in two and three dimensions.
Existing FEM and BIEM technology can routinely solve LEFM problems with the
exception of the problems of interface crack and the intersection of a
crack with a free surface. These problems require further study, although
current research seems to be converging on an understanding of these
phenomena.

LEFM problems involving mixed mole fracture have been less precisely
theorized. Sufficient theoretical framework exists; however, it has not
been tested adequately. Interest in mixed mode fracture of metals
historically has been given less importance than warranted by the existence
of mixed mode failures. This imbalance needs to be addressed if LEFM is to
become a truly mature technology. Current numerical methods for
two-dimensional mixed mode LEFM problems are adequate. Three dimensional
problems can be solved; however, methods for extraction of relative
fracture parameters (e.g. stress intensity factors or energy release rates)
are not quite mature. When the ippropriate parameters are theoretically
established, existing numerical techniques can be evaluated. (In fact,
such evaluations are ongoing as interest in three-dimensional composite
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problems increases). Completing the development of numerical techniques
for LEFM problems should be easily accomplished in the next several years.

The problems involving material nonlinearities constitute the greater
challenge for both numerical analysts and fracture theorists. The need for
a richer fracture theory which can predict the onset and propagation of a
stable crack is by far the greatest research need. Such a theory, by the
very local nature of the deformation and the complication of simultaneous
loading and unloading of the material, will require local fracture theory
in the neighborhood of the crack. From a purely continuum viewpoint, such
a criterion must address the local energetics of the crack propagation and
incorporate the energy loss due to crack growth, energy loss due to plastic
dissipation and energy input from applied loading in a self consistent
manner. Several researchers are addressing this issue; unfortunately, the
majority of the community is pursuing other, unlikely, avenues.

From a computational perspective, the major needs in support of ductile
fracture research are algorithms which can more quickly solve nonlinear
problems, better time integration schemes for rate dependent problems and
better methods for extracting local crack front field quantities.
Nonlinearities occurring due to material behavior and finite deformations
must be addressed at the outset in a consistent manner. Specifically,
crack growth modeling algorithms must be studied to determine mesh
sensitivity and convergence with respect to near crack front field
quantities. To date, these studies are lacking. Of primary interest will
be the convergence of stress, strain (or deformation gradient) and energy
fields as these are the quantities which must make up a viable local
fracture criteria.

An area which has received some recent interest is the problem of short
cracks. While much testing has been performed, little in the way of
fundamental understanding has emerged. The propagation characteristics of
short cracks and its influence on future instability would appear to be a
critical question. Microstructure effects are more important for short
crack problems and should be included in the theory. More research on
developing predictive methodology and a theoretical framework is needed.

The focus of this paper has been on deterministic fracture mechanics.
Indeed, where applicable, deterministic methodology for the prediction of
fracture is desirable as uncertainty is eliminated. For applications
involving random loading or imprecise knowledge of the loading, geometry or
material response, deterministic fracture methodology is not applicable.
For these applications, stochastic methods are required. Stochastic
methods for the prediction of fatigue and fracture have been employed for
more than twenty years. These methods can often provide an estimate of
safety and life prediction for problems which are otherwise not
addressable. Because stochastic approaches employ random variables to
represent physical parameters, extreme care must be exercised to validate
the model and the data before application. Validation methodology and
assessment of accuracy of these techniques require considerable research
before routine application can be safely accomplished.

In the short term, the FEM must provide the solution methodology and
improved algorithms desired, as it is the most firmly established and
robust methodology for nonlinear problems. The open questions discussed
above must be attacked from a purely numerical (mathematical) approach to
establish accurate results to the posed problems. These solutions,
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therefore, will establish the validity (or lack thereof) of the assumptions
built into the theoretical formulation. A much more concentrated, broader
effort than is currently ongoing is required.

Concurrent with FEM research, the BIEM method should be studied. This must
be viewed as a long-range investment as the method is not ideally suited to
nonlinear problems. However, because one dimension of discretization is
removed (i.e., FEM for three dimensional problems requires a three
dimensional mesh while BIEM requires a two dimensional mesh), the approach
is extremely attractive. Also, because for linear problems the BIEM not
only produces accurate displacements but accurate gradients as well, robust
BIEM for nonlinear problems may improve one of the major problems with FEM
solutions: namely the low resolution of gradient quantities.

An important issue is the application of fracture mechanics to real
problems. It is necessary to take methodology from the laboratory and the
computer and employ it in applications to obtain a full assessment. This
aspect of integration of fracture mechanics into the engineering design and
analysis world lags significantly behind research in fracture mechanics. A
strong cooperative, interdisciplinary effort in this area is needed.

A discipline which may assist in the integration of fracture mechanics to
engineering design practice is the field of artificial intelligence and
expert systems. It may be possible to create design systems with an
integrated expert knowledge base and a hierarchical, rule based decision
process. While application of these techniques to fracture mechanics has
yet to be explored, the success of knowledge based systems in other
disciplines indicates that application to the design process with fracture
mechanics information should be attempted.

Another issue which needs concentrated effort is development of high-risk,
long-term issues which may or may not directly influence current
applications. Unanswered questions in the real nature of local deformation
response when material nonlinearities and geometric nonlinearities are
present, where crack tip blunting exists, where thermal gradients are
present, etc., remain as obstacles to furthering the field. Because these
problems cannot be addressed anélytically with the current state of
mathematics, numerical approaches must be employed. More refined modeling,
more robust algorithms and significant computational resources will be
required. Going into such investigations, the payoffs will be totally
unknown. For this reason (as well as many practical considerations),
research in this area is almost nonexistent. Future breakthroughs,
however, will only come if the local deformation state can be fully
understood. Research on these issues, therefore, is essential.

The National Agency for Finite Element Methods and Standards (NAFEMS) has
recognized that Finite Element Methods are a vital part of the design and
safety verification of many major engineering structures and in a variety
of industries. They form an integral part of the design/redesign cycle.

In the U.K., the National Engineering Laboratory has brought together
leading users of finite element nethods to form the National Agency for
Finite Element Methods and Standards, which has as its objective the aim of
producing tests which can easily result in performance figures which will
then be useful for potential users of commercial finite element codes. The
benchmarks themselves have tried to aim for known or likely weaknesses in
commercial systems.

The NAFEMS Fracture Mechanics Working Group under the chairmanship of Dr.
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Trevor K. Hellen is working on benchmark tests app%icable to the fracture
of structures. The forthcoming results should be important for the users
of the various codes being utilized today in fracture mechanics. Such

studies should be encouraged.

While much progress has been made in the solutiQn of the comp11?ated
problems in fracture mechanics over the years, it shogld.be_obv1ous t9 the
reader that fracture mechanics is far from a mature discipline. The issues
summarized above (in addition to many other topics beyond the scope of this
paper) warrant a significant research effort far Peyond t@e current lev:%.
Major advances can only be made through a large, 1ntergat1ona1, cooperative
effort which is well supported by both government and'lndustry. Fracture
mechanics historically has enjoyed a great degree of international
cooperation. This is to be congratulated and encouraged.
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