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ABSTRACT

This paper is concerned with the application of computer image processing technique to nonlinear fracture
mechanics analyses. First, a new experimental and computational hybrid method to evaluate the J-integral
is proposed. The displacement distribution near a crack tip is measured directly by means of the computer
image processing technique. Then, the strain and the stress distributions are calculated, with which the
J-integral is evaluated by the line integration technique. Since the method uses only the stress and strain
values near the crack tip, the J-integral can be measured on arbitrarily shaped specimens.

The second application of the computer image processing here is the experimental evaluation of the HRR
( Hutchinson-Rice-Rosengren ) singularity field from the displacement distribution near the crack-tip.

To demonstrate the validity of these methods, a tensile test is performed on a compact specimen. Then, the
J-integral values measured by the present method are compared with the Merkle-Corten equation. Also,
comparing the experimental results with the numerical ones, the HRR singularity of the near-crack-tip is
discussed in detail.
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INTRODUCTION

In many occasions of assessing the integrity and safety of structures, nonlinear fracture mechanics have
been widely utilized together with computer simulation techniques such as the finite element method.
Especially, the J-integral (Rice, 1968) seems one of the most promising fracture mechanics parameters.
The main reasons of this can be explained as follows. First of all, it has been proved theoretically that,
under the conditions such that the deformation theory of plasticity is valid, the J-integral is directly related
to the strength of the HRR ( Hutchinson-Rice-Rosengren ) singularity of the crack tip stress-strain fields
(Hutchinson, 1968, Rice et al., 1968), and also that it has a path independence (Rice, 1968). The latter
characteristic is very convenient for the numerical evaluation of the J-integral. Another important fact is
that, for some standardized shaped specimens, several simple experimental formulae which require only a
load vs. load-point-displacement curve, have been developed (Beglay, 1972, Rice et al., 1973, Merkle et
al., 1974).

Nevertheless, several problems still remain unsolved in the nonlinear fracture mechanics. First, the general
procedure to measure the J-integral of arbitrarily shaped specimens has not been developed yet. For
example, the simple experimental formula mentioned previously can be applied only to limited shaped
specimens such as a three point bending specimen and a compact tension one. Even in the methods using
strain gauges, the configuration of a specimen is restricted so that the partial differential of displacement

2059



2, tay becoine gero or negligible at the location of strain gauges (Kawahara et al., 1983, Frediani, 1984,
S ot al, 1085)

Second, the singularity has been rarely evaluated experimentally, though several numerical studies on the
HRR singularity have been performed so fur (Yagawa et al., 1984, Shih, 1983).

The authors have developed a new optical method to directly measure the displacement distributions by
means of the computer image processing (Yagawa et al., 1984, 1985, 1987, Soneda et al, 1988). In this
study, the method is applied to the measurement of the J-integral as well as the HRR singularity field. In
the evaluation of the J-integral, the strain and stress distributions near the crack tip are first calculated
from the displacement distribution measured with the computer image processing. Then, the J-integral is
calculated by the path integration technique, which is widely used in the finite element fracture analysis.
Since this method uses only the stress and strain values near the crack tip, the J-integral can be measured
on arbitrarily shaped specimens.

As for the HRR singularity, its dimensionless functions are evaluated experimentally with the measured
displacement distribution near the crack tip and the J-integral.

To demonstrate the validity of these methods, a tensile test is performed on a compact tension (CT)
specimen. The J-integral values measured by the present method are compared with those obtained with
the Merkle-Corten’s formula. Also, the experimental results of the dimensionless functions of the HRR
singularity are compared with the numerical ones (Shih, 1983) in detail.

DISPLACEMENT MEASUREMENT SYSTEM BY MEANS OF
COMPUTER IMAGE PROCESSING

Figure 1 shows the principle of the displacenent measurement method (Yagawa et al., 1984, 1985, 1987).
First, hundreds of marks are printed on a surface of the specimen beforehand. Locations of marks are
determined automatically by the computer image processing technique. The displacement of each mark
is calculated as a difference between the locations of the mark before and after the deformation. The
displacement distribution is calculated from the mark displacements using the data smoothing technique
(Soneda et al., 1988).

Figure 2 shows the hardware of the present image processing system. A vidicon camera is used as an image
input device. A TV image has 1024 times 10% pixels. The brightness of a pixel is expressed by 256 digital
gray levels. The host computer used here is z 16-bit personal computer (NEC PC-9801).

In general, it takes tremendous time for the personal computer to process the image data of one mega-bytes
(1024x1024x8 bits) as above. In order to shorten the processing time, the image processing algorithm is
divided here into two stages.

In the first stage, named "Pre-processing’, low density image data of 256x 256 pixels are used. The al-
gorithm of the pre-processing is shown in fig. 3. High-frequency noises in the image are taken off in the
"SMOOTHING’ process. The change of the gray level of mark is sharpened in the 'ENHANCEMENT’
process. The shading in the background of ths image is removed in the 'LAPLACIAN’ process. The gray
image is converted to a binary image in the 'BINARIZATION’ process. Finally, rough locations and sizes
of marks are determined by tracing their bouidaries in the "BOUNDARY FOLLOWING’ process.

In the second stage, named "Main-processing’, so-called windows are set in the original fine image. The
precise location of each mark is determined inthe window as the central coordinate of the gravity of the
mark.

After these image processing processes, the smcothing technique developed by the analogy with the concept
of the Sobolev-norm (Shih, 1984) is applied ‘o the data of the mark displacements in order to reduce
the measurement errors and to obtain the smooth displacement distribution (Soneda et al., 1988). The
measured area A is subdivided into a number of four-noded finite elements, and then the nodal values of
the displacement vector u are determined by minimizing the following error measure ¢:

¢:/(u—i)2dA+/(u'—ii‘)2dA (1)
A A
where U are the vector of the measured displicements of marks, and the prime denotes the first-order

derivative with respect to the coordinate. Using this technique, the smooth distributions of both the
displacement and its derivative can be obtained.
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HRR Singularity

o . i ag :
For the material of a pure power-law type uniaxial stress-strain relation
= =o() ©)
= = - )
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the HRR singularity of the near-tip displacement field is written as follows :

a1 . .
u; = aeo yerira F(0,n), i=r,0 (7)
aggoo .
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i tered at the crack tip, o the yie )
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respectively (Hutchinson 1968, Rice et al., 1968)

n the pr i T i 7,8) and
In th esent study, F, and Fy are calculated from the nodal displacement ui(r,6) at a location ( )

P y L'y
the J-integral as follows : (o ) i Y "

Hilmb)= aeo( =L ):%rﬁf’

a€goo
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EXPERIMENT
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be seen from the figures that the experimental and numerical curves are similar to each other in shape,
whereas their magnitudes are a little different.

DISCUSSIONS

It is confirmed from the experiment described in the previous sections that the present method based on
the image processing technique is effective in evaluating the J-integral as well as the crack tip singularity.
However, there is still some inconsistency between the experimental results and the theoretical presumption.
It seems that this inconsistency is mainly caused by the three-dimensional effects of the crack.

To begin with, let us examine the evaluation procedures of the J-integral. It is well known from several
three-dimensional studies on through-wall cracked specimens that the J-integral value is usually smaller on
the specimen surface than inside (Kikuchi et al., 1983, Wellman et al., 1985). The value in the experiment
in the previous section, Jj, is evaluated using the strain and stress values measured on the specimen surface
near the crack tip, while J,, evaluated from the Merkle-Corten’s formula is based on the load vs. load-
point-displacement curve. From this consideration, it is easily expected that the present scheme by the
computer image processing evaluate the J-integral on the specimen surface, while the simple experimental
formula as that of Merkle-Corten does the average value of the J-integral along the crack front. This may
be the main reason why J, is a little smaller than J, in fig. 11 at higher loading levels.

The reason why F* and Fj disagree in a qualitative sence with either of the two-dimensional numerical
results as shown in figs. 13 and 14 may be also attributed to the fact that the experimental results are

measured on the specimen surface.
It is noted that the J, and CTOD values have a good proportional relationship on the specimen surface
(see Fig. 12) and that, irrespective of the loading level, the identical dimensionless functions are obtained

using both J, and the near crack tip displacement distribution on the specimen surface. These results seem
to predict that there could be a singularity field on the surface, slightly different from solutions obtained

from the two-dimensional analyses.

To study these three-dimensional effects more precisely, the further experiments and the three-dimensional

numerical simulation are strongly required.
CONCLUSIONS

The conclusions obtained in this study are given as follows :
(1) The J-integral is successfully obtained using the displacement distribution near the crack tip measured

by the computer image processing technique. The main advantage of the method is the capability in
evaluating the J-integral of arbitrarily shaped specimens since the method uses only information near

the crack tip.
(2) The singularity of the crack tip displacement field is evaluated experimentally.

(3) There could be a special singularity field on the specimen surface, slightly different from the two-

dimensional numerical results.
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