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ABSTRACT

Analyses of ductile crack growth are discussed where the material’s constitutive description
allows for the possibility of a complete loss of stress carrying capacity, with the associated
creation of new free surface. No additional failure criterion is employed so that fracture
arises as a natural outcome of the deformation process. Attention is confined to circum-
stances where the microscale fracture mechanism is ductile void growth. The overall aim
is the prediction of parameters characterizing macroscopic toughness, e.g. Jic and the tear-
ing modulus, in terms of properties describing the fracture mechanism operating on the mi-
croscale, e.g. the density and spacing of void nucleating particles. Representative results are
presented and some of the numerical challenges raised by this sort of analysis are discussed.
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INTRODUCTION

Experimental studies of ductile fracture have shown the central role played by microvoid growth
in metals (Puttick, 1960, Rogers, 1960, Gurland and Plateau, 1963). The voids nucleate mainly
at second phase particles by decohesion of the particle-matrix interface or by particle fracture,
and final rupture involves the growth of neighboring voids to coalescence. Analyses of the
influence of microscopic voids on plastic flow have been based on a constitutive formulation for
progressively cavitating solids (Gurson, 1977). The voids are represented in terms of a single
parameter, the void volume fraction, and give rise to dilatancy and pressure sensitivity of the
macroscopic plastic deformations. Since the material’s constitutive description allows for the
possibility of a complete loss of stress carrying capacity with the associated creation of new free
surface, fracture arises as a natural outcome of the deformation process. This contrasts with
the usual approach to fracture analysis where the constitutive characterization of the material
and a fracture criterion are specified separately.

Attention is focussed on circumstances where the fracture mechanism involves two populations
of void nucleating particles; larger particles that nucleate voids at relatively small strains and
smaller particles that nucleate voids at much larger strains. The spacing between the larger void
nucleating particles can serve as a characteristic length. Including a characteristic length into
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the Imnn.dt.tr_y v.alue problem formulation is important since macroscopic measures of resistance
to crack initiation and growth, e.g. Ji. and the critical crack tip opening displacement, involve

linear dimensions (Rice and Johnson, 1970). Therefore, since the constitutive relation does not

contain a material length scale, a chara.cl;eustlc length ust enter the boundaly value pIOb]( n
m
’ g n h

One aim of the analyses discussed hese is to relate phenomenological measures of ductility and
fracture ta)ug%mess to measurable (and controllable) features of the material’s microstruZturv
Al'lotl.ler alm 1s to assess the range of applicability of various phenomenological ductile fracture
criteria and to provide a method of fzilure analysis when such criteria cannot be applied

MATERIAL MODEL

Ba.se<_i on an approximate analysis of a single spherical void, a yield function of the form
¢(ab,a,f) = 0 was pl:oposed (Gursor, 1977) for a porous plastic solid with a randomly dis-
tributed -volume fraction, f, of voids. Here, @ is the macroscopic Cauchy stress tensor and 7 is
the matrix flow strength. The flow pctential has the form .
2
_ U_e * 3'120 *
® =25 +201)7 cosh( )~ 1- g2 = 0 1)

zjvheula1 the mean stress, cr,,.l, and the eflective stress, O, are defined in terms of the macroscopic
auchy s.tress,a, asom = 30:Tand 0! = %0’ :0’. The stress deviator is givenby o =o-1I0
where I is the second order identity tensor and A : B = Aiij;. "

TI;e parame'ters a and ¢, were introduced to bring predictions of the model at low void
v; ume fractions into closer agreement with full numerical analyses for periodic arrays of voids
(Tvergaard, 1981,1982). The function f*(f) was proposed to represent the more rapid loss of

ng ’
stress carryin, capacxty associated with void COa-leSCeIlCe (Tverga.ard and Needlenla.n 1984)

e f f<fes
fe + (f; - fC)(f = fe )/(ff - ff:) f> fe (2)

so tha't the modiﬁcaltion becomes active when f exceeds a certain critical value, f., and the
mattzn:}{ stt?ess carrying capacity is conpletely lost for f=fr (e, f*(fy) = f2 = 10/7q1) It is
note at for ¢; = =1land f*= i isi ieal e :

s, TS q2 f f,the function (1) is identical to that originally proposed

Using (1) as a plastic potential, the flov rule is written as
. 0%
dP = A —
e ®)

The prop(')rt.iona:lity factor A is determized from the equivalence of the macroscopic dissipation
and the dissipation of the matrix material, 0 : d? = (1 - f)& €, which gives

k=(1-nodl/e: 32 @

The rate of increase of the void volume fraction is taken to be

f:(l_f)dp :I+jnucleution (5)

wl.leref the first term comes frt?m growth of existing voids with deformation. Two void nucleation
criteria have been used; one is a plastic strain criterion for which

jnucleation = D¢ (6)
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while the other is the stress based criterion
jnucleution = B(de + Um) (7)

In (6), D is considered a function of € while analogously in (7), B is taken to be a function of
(0c + 0m) so that the quantity (e + 0,,) plays the role of a nucleation stress. In the analyses
reviewed here, D and B have been specified in terms of a normal distribution about some mean
nucleation strain or stress, respectively (Chu and Needleman, 1980). For strain nucleation, D

is written as f g
N € — €N 2
exp[- 5[] 8)
sNV2T 2" sn
where fy is the volume fraction of void nucleating particles, €, is the mean strain for nucleation,
and sy is the corresponding standard deviation. For stress nucleation, a similar expression is
employed to give a normal distribution about a mean nucleation stress, on.

The matrix plastic strain rate, ¢, is specified as
&= é[a/g@N™ , 9(0) = oo(éeo + V)", €0 = 00/ E (9)

Here, € = [é&dt and the function g(€) represents the effective stress versus effective strain
response in a tensile test carried out at a strain-rate such that € = é. Also, 0g is a reference
strength and N and m are the strain hardening exponent and strain rate hardening exponent,

respectively.

The specification of the constitutive relation is completed by writing the total rate of deforma-
tion tensor as the sum of elastic and plastic parts,

d=d°+d? (10)
where the elastic part is expressed in terms of the Jaumann rate of Cauchy stress, &, by

dezlz"a_ @:DI=C":6 (11)

ST

Inverting and combining with (3) and (10) gives the stress rate as

s I

g=C:d-Ac: g (12)

FINITE ELEMENT FORMULATION

The incremental constitutive relations are implemented in a Lagrangian convected coordinate
finite element formulation that takes full account of finite strains and rotations, e.g. (Needleman,
1982). Attention is confined to quasi-static deformations and expansion of the principle of
virtual work about a known reference state gives,

At/vﬁ:(Véu)dV:At/s’i‘-&udS - [/Vn:(Véu)dV—/sT-éudS] (13)

Here, n = JF~! .0 is the nominal stress where F = I+ Vu is the deformation gradient and
J = det(F) is the Jacobian of the deformation. The surface traction vector is denoted by T and
V is the material gradient operating on the displacement, u. Spatial integrations are carried
out over the reference volume, V, and surface, 5. The bracketed term on the right hand side is
an equilibrium correction term to adjust for any slight out of balance forces arising from finite
time steps. For the range of strain rate sensitivity considered in these analyses, the equations

2043



are numerically “stiff” and require small time steps for stable numerical integration. A rate
tangent modulus method (Pierce et al., 1984) is employed to increase the stable time step size

The finite element mesh consists of quadrilaterals built up of “crossed” linear displacement
triangular elements. Such a grid is wited for isochoric deformations (Nagtegaal, Parks and
Rice, 1974) which is important since relatively large plastic strains can occur prior to void
nucleation. However, the primary metivation for choosing this type of mesh stems from the
need to resolve narrow shear bands. A suitably oriented “crossed” triangle mesh can resolve
narrow localization bands; if the orientation is not optimal or if a finite element mesh consisting
of ordinary isoparametric elements is used, localization can be obtained numerically, but with
some delay and with a mesh induced shear band broadening (Tvergaard et al., 1981). An
alternative to the “crossed” triangle arrangement is a recently proposed enhanced element
method (Ortiz, Leroy and Needleman, 1987).

DUCTILE FRACTURE AT A CRACK TIP

1984, Aravas and McMeeking, 1985ab, Needleman and Tvergaard, 1987). The interaction of &
single void with the crack tip has been considered (Aoki et al., 1984, Aravas and McMeeking,
1985ab), while the nucleation of larger wids from “islands” of increased density of the amplitude

increased nucleation amplitude, it is feasible to study the effect of an array of larger inclusions,
interacting with the crack tip and with one another.

Here, we present some results for a ful specimen, a center cracked panel. As in a previous
study (Needleman and Tvergaard, 1987), the distribution of small scale particles is taken to
be uniform and nucleation at these particles is taken to be governed by the strain controlled
criterion, (8), with SN =0.02, ey = 08 and sy = 0.1. Nucleation at the larger particles is
taken to be stress controlled with fy =0.04, op = 2.200 and sy = 0.10¢, and their spatial
distribution is modelled by a square array of “islands” of increased density of the amplitude of
the void nucleation function. The matrix material properties are given by N = 0.1, m = 0.01
and € = 0.002 in (9). The center cracked panel dimensions are height (specimen length
perpendicular to the crack line) 2h, width (specimen width parallel to the crack line) 2w, and
crack length 2a where in the calculation reported on here a/w = 0.5 and h/w = 2.0 and one
quarter of the specimen is analyzed numerically. The crack is represented by an initially semi-
circular notch of radius 2 x 10-44. The distance between “islands” is 2 X 1073w and their
radius is the same as that of the semi-circular notch, 2 x 10~4w.

strain, €, prior to (Fig. 2a) and during crack growth (Figs. 2b and 2¢). Plastic straining mainly
occurs in a 45° band emanating from the rack tip. The stages of deformation are characterized
by the value of the J-integral (Rice, 1968) as well as by the applied load.

The assumption that the larger inclusions have relatively low strength, while the smaller par-
ticles require large straining prior to nucleation, has a significant influence on the fracture
mechanism. Self-similar stress and straip fields develop during crack tip blunting and sweep
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Fig. 1. Load versus overall strain for a center cracked panel with
af/w=0.5.
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Fig. 2. Contours of constant matrix effective plastic strain, E),Uin/‘]tlz
quidrant analyzed numerically at (a) P/Piimit = 0.801,3(1;; — -a 201 5
550 (b) P/Piimir = 1.12, (w — a)op/J = 175 and (c) | Piimit .18,

(w - a)ao/J = 99.

initial di i by the stress peak
i i i t initial distance R is reached :
t aterial, so that a particle a _ ] .
0vher tl;; negrzlg EI)n while the strains are still very small (Rice and Jol:nan:s, Sl:’tfl(i;t Lot t(;
1 78711 A(?tJer a V(;i(i has nucleated, it is engulfed by the field of large skrz:{ e e
iy hile small scale voids nucleate in the ligamen.t l.)e.tween the crac 1gom L i
%rl?w’ ” ess repeats itself when inclusions that were initially furtllllerta\»/ta};1 3. where nons
ohed i i { crack growth is illustrate % 3;
tress peak. This mechanism of c : ! S eanzger
r?aChei;)uyrsﬂ:; foecti\?e stress show crack growth through subsequent nucleation o
tip con

2045



voids. In Fig. 3a, the matrix flow strength contours reflect the presence of the “islands” of the
void nucleation function amplitude representing the large particles. The G/00 = 1.4 contour is
of the shape expected from the HRR ield (Hutchinson, 1968, Rice and Rosengren, 1968). The
effect of the overall center cracked panel deformation pattern is seen in the other contours. The
transition to crack growth type fields (Drugan et. al, 1982) is evident in Figs. 3b and 3c. In
particular, note the unloading wedge behind the propagating crack tip.

(a) (b) (C)

Fig. 3. Contours of matrix fow strength, /0y, near the crack tip at (a)
P/})h'mit = 080, (w - (l)U()/J = 550 (b) P/I)limit = 1.12, (w— a)o’g/J =
175 and (¢) P/ Piimir = 1.18, (w —a)oo/J = 99.

One feature associated with this sort of calculation is the large stress redistribution that occurs
as the crack grows. This is illustrated in Fig. 4, which shows contours of hydrostatic stress at
these three stages of crack growth. As the crack grows, the hydrostatic stress peak moves.
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e 07
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(a)

Fig. 4. Contours of normalzed mean normal stress, o,,/dg, near the
crack tip at (a) P/Py;,i, = 080, (w—a)ae/J = 550 (b) P/ Piimiz = 1.12,
(w—a)oy/J = 175 and (¢) P/ Primiy = 1.18, (w — a)og/J = 99.

Localized shearing in the form of a void sheet plays a role in the fracture process, as illustrated
in Fig. 5. The elements painted black haw undergone a complete loss of stress carrying capacity
and their boundary represents free surface created by the fracture process.

Previous small scale yielding calculations (Needleman and Tvergaard, 1987) and the full spec-
imen calculation presented here appear to provide accurate descriptions of modes of ductile
failure at a crack tip and illustrate the dependence of crack initiation and growth on microstruc-
tural features such as the distribution and nucleation characteristics of second phase particles.
These calculations also give quantitative predictions of the dependence of crack initiation and
growth on microstructural features. Figure 6 depicts predicted dependence of crack initiation
on inclusion size and spacing, together with a summary of experimental results. More recently,
a similar computational framework has been used in a combined numerical and experimental
study of ductile fracture by grain boundary void growth in Al-Lj alloys (Becker et al., 1988).
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Fig. 5. Deformed near tip finite element mesh. A complete loss of
stress carrying capacity has occurred in the elements painted black.
From (Needleman and Tvergaard, 1987).

DATA FROM FRACTURE TOUGHNESS TESTS

HIGH STRENGTH STEEL (MnS INCLUSIONS),
* RICE AND JOHNSON (I970), PELLISSIER (1968)
be/0 v » ALUMINUM 2000 SERIES) VAN STONE
f e ALUMINUM 7000 SERIES/ET AL.(1974)
o AIS| 4340 STEEL(M‘:SS;!;E(LUSIONS) COX AND
= 18-Ni. 200 MARAGIN
(Ti(C,N) INCLUSIONS) Low(1974)
MILD STEEL (SPHEROIDIZED Fe C INCLUSIONS),
¥ RAWAL AND GURLAND (I976)
DATA FROM CRACK-GROWTH INITIATION TESTS
OEnlA MILD STEEL
© PRE-STRAINED EnlA GREEN AND
® ENIA (LONGITUDINAL SPECIMEN)( knoTT(1976)
® C/Mrn STEEL
FRACTURE MODEL

SMALL-SCALE YIELDING , RICE AND JOHNSON
(1970)

Fig. 6. Crack tip opening by at fracture initiation., related to p?,rti-
cle spacing D and particle size 2ry. Results of previous computations
(Needleman and Tvergaard, 1987), indicated by a, b .and d are plotted
along with summarized experimental data (McMeeking, 1_977). Here,
a, b and d refer to various distributions of the large particles. From
(Needleman and Tvergaard, 1987).
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