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ABSTRACT

Integral equations for the resultant forces on a piece-wise smooth crack line are
formulated and coupled to the standard BEM equations for the outer boundary of a
finite plane. The resulting equations are a generalization of the equations for infinite
geometries (Cheung and Chen, 1987). The integrals along the crack line, with the
dislocation densities as unknowns, contain only a weak logarithmic singularity. An
improvement of the numerical formulation at a kink of the crack line is introduced. Two
numerical experiments are presented and compared with alternative numerical
calculations. ~
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INTRODUCTION

Singular integral equations are widely applied for the solution of fracture mechanics
problems. For cracks in two dimensional infinite geometries and elastic materials, these
equations can for example be derived either by applying the integral transform method,
or by using complex potentials (Erdogan, 1983). The resulting integral equations, with
dislocation densities as unknowns, are expressions for the tractions along the crack line
and contain a Cauchy-type singularity. More general integral equations for finite
geometries, also for the tractions along the crack line, can be derived by performing
partial integrations of the standard BEM equations (Zang and Gudmundson, 1988a).
The numerical formulation of the integral equations is based on a suitable numerical
evaluation of the singular integrals. A collocation method is then applied to derive an
approximate solution of the equations.

It was however shown by Zang and Gudmundson (1988a) that if a piece—wise smooth
crack is considered, the expressions for the tractions on the crack line are not valid at a
kink. This fact can give rise to numerical difficulties. Lo (1978) applied a Green's
function for a point dislocation which satisfies the traction free boundary conditions on
the main crack surfaces. An integral equation for the branched portion of the crack
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could then be formulated. Problems which can arise from the presence of the kink are
avoided by using this method. The method is, however, limited to problems which
concern an infinite plane containing a crack formed by two straight lines. For more
general problems, a symmetrical constraint equation for a kink was introduced by Zang
and Gudmundson (1988a), since in general the deformation close to a corner is
dominated by a symmetrical singular mede. However, if a corner is loaded by a pure
antisymmetrical load, errors may arise by the application of a symmetrical constraint
equation. This problem can be avoided using an antisymmetrical constraint equation at
that particular corner, if it could be known beforehand that the corner would be
antisymmetrically loaded.

Recently, Cheung and Chen (1987) introduced an alternative integral equation for
problems with kinked cracks in infinite plates. The unknows in their equations are still
dislocation densities and the integrals represent the expressions for resultant forces along
the crack line. Compared to a 1/r singularity for the traction formulation (Erdogan
1983; Zang and Gudmundson, 1988a), their equations only contain a weaker logarithmic
singularity. This implies that the equations are valid for every point along the crack
line.

Using the same ideas as were presented by Cheung and Chen (1987), integral equations
for the resultant forces on an internal piece-wise smooth crack in a finite plate have
been derived in this investigation. The unknowns in the equations are still the
dislocation densities along the crack line. To handle the singularities of the dislocation
densities at a kink, double nodes with identical coordinates were introduced at each kink
of the crack line. Numerical results (Zang and Gudmundson, 1988b) have shown that
this technique generates much better results compared to the results presented by
Cheung and Chen (1987), where an extrapolation equation was used for the numerical
formulation at a kink.

Two different numerical examples have besn evaluated, a rectangular plate containing a
V-shaped crack and a Z-shaped crack respectively. The numerical results have been
compared to the solutions using the method presented by Zang and Gudmundson
(1988a) and to own finite element calculations.

PROBLEM FORMULATION AND NUMERICAL IMPLIMENTATION

A two—dimensional region 2, with outer boundary T, and an internal piece-wise smooth
crack line T'c, is loaded by prescribed tractions 7j on some part of the boundary and
prescribed displacements uj on the other part of the boundary, see Fig 1. Furthermore,
the crack surfaces are assumed to be symmetrically loaded, i.e. T] ==Tj, where the
superscripts + and — denote the upper and the lower boundary of the crack line
respectively. The problem can be formulated (cf. Zang and Gudmundson, 1988a) as an
integral equation for the displacements on the outer boundary,

ci(p)uj(p) = J Uij(‘P,(I)rj(q)dF - [ T4;(p,9)u;()dl
pel I r
_J Wii(p,9) a__[Auj(Q)] ds-,

F; ds

coupled to the integral equation for the tractions on the crack surfaces,
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Fig. 1. Geometry and coordinate systems.
In egs.(1-3), Auy denotes the crack opening displacement, ug — uj, and s- is the local
tangential coordinate along T';. The integral kernels Uy;, Ty;, Wij, Usjie Ty and Py
are given by Zang and Gudmundson (1988a).

It was shown (Zang and Gudmundson, 1988a) that eq.(2) is not valid at a kink of the
crack line. This can introduce some numerical difficulties when kinks are present on a
crack line. To avoid such difficulties, an integral equation for the resultant forces along
the crack line is instead introduced in the present investigation.

The integral equations for the resultant forces on the crack line are dgter_miped by an
integration of eq.(2), along the crack line, from one crack tip A to a ponit pTelg,
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After a change in order of integration and an explicit integration with respect to A, the
resultant forces can be written as

Fi(r) = [ Hu(50m(@dr + [ 607 0)uy(g) ar
r

pele, T
5 (5)
+ [ K700 _dugs+ ¢,
I s
where for plane deformation
—1
H, = [2(1—1/) ¢ 6 —(1-20) In(r) € + (1,,1,.) € ],
Jjk m i jk jk ks €js
—2
Gjy = M [r,snt €4 Ojc + (r,jfks + Tk€js ) r,sr,tnt},
47 (1—v) r
5 (6)
Ky = H [ In(r) Ojk —TyjTsk J,
dr(1—v)
t8(0) = n/n, 1= (§-x), 1= 1/, (7)

and where 6;; denotes the Kronecker delta and €12= €22 = 0, €12 = —€g1= 1.

The integral equation (1) for the displacements on the outer boundary, together with the
integral equation (5) for the resultant forces on the crack line, and the constraint
equation (3) define the problem to be solved. It is observed that the only singularity in
eq.(5) is the logarithmic term in Kjk. Sinte p- is located on the crack line and only
internal cracks are considered, the integrals along the outer boundary contain no
singularities.

The integrals in egs.(1, 3, 5) can be divided into the integrals along the outer boundary
I, with the displacements uj or the tractions 7j as unknowns, and the integrals along the
lower crack line T, with the dislocation densities 0/05~(Au;j) as unknowns. In this
investigation, the standard BEM technique was directly utilized for the integrals along
the outer boundary T'. For the integrals along the crack line T, a slightly different
boundary element method was applied. The method is described below.

A crack formed by two straight lines is considered. The crack is divided into two
segments separated by the kink. Each line is discretized into N; elements with Ni+1
nodes. The line coordinate s, and the dislocation densities D; (Di = 8/8s7(Au;)), within
an element away from the crack tip, are described by standard linear isoparametric
shape functions. For instance, the interpolations for the interval 2,2, become

8= Ml(ﬂ)Sk i MZ(W)Skn )

(8)
D;= Mi(7)Dj, -+ Ma(7)Dj, 101 5
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My(n) = (1-n)/2,
Ma(n) = (1+1)/2,

where s, denotes the coordinate, Dj,, the dislocation densities at node a,, and |7|<1 the

(9)

local coordinate for the considered element. For the first element, ajas, which contains

the crack tip a;, the following interpolation is used for the dislocation densities

D; =v2/(T+n) [Mi(m)D;, + Ma(n)Dyyp ] - (10)

For the elements adjacent to a kink, double nodes with identical coordinates are
introduced at the kink. In addition, a mesh refinement technique (Strese, 1984) was
applied close to points for which singularities in the dislocation densities could be

expected.

It follows from above that there are 2(N;j+1) unknown nodal dislocation densities for
each smooth segment (i) of the crack line. Thus, for a crack composed of two straight
lines and with the addition of the two unknown constants C;j in eq.(5), a total of
2(N1+N2+3) unknowns result. Certain collocation points are then selected in order to
generate as many equations as unknowns.

Since only internal crack problems are considered, the following constraint equation has
to be fulfilled

l_Dids=0. (11)

c

Hence for a unique solution to the problem, at least (N;1+N2+2) collocation points are
needed. If all the nodes which are not located on a kink are selected as collocatpn
points, then there will be (Nyj+Nj) collocation points and two additional collocation

points are needed. These two points can be arranged such that 7= nr for the point to the
right of the kink and n:nl for the point to the left of the kink. Zang and Gudmundson
(1988b) showed that the numerical solutions are not sensitive to the selection of 5" and

771. In this investigation 7’ = 0.5, r]l = 0.5 were used for all the numerical calculations.
In this way, as many equations as unknowns can be generated for the problem.

The integrals along I'c are numerically evaluated by using Gauss-Chebyshev quadrature
for nonsingular parts and explicit analytical integration for singular parts.

The stress intensity factors, for example at the crack tip B, see Fig. 1, can be calculated
afterwards as

Ky=_—2# V27nd [D*' ) D*cos(a)]
TRy V2T e L Disin(e) - Dacos(a) |, -
_ t2u * *
KH— m v2rmd [ D1COS(Q) + Dzsm(a) ] 5
where d is the length of the element close to the crack tip B, « is the angle between the
* * .
X axis and the crack line, and Dy, Dy are the nodal values at the crack tip B.
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NUMERICAL RESULTS

Two different crack problems were evaluated by the present method, a rectangular plate

containing a V shaped crack and a Z shaped crack respectively. In this investigation

linear elements were used for all the integrals. For comparison, calculations were

?f&;fS%n?ed by the finite element method and the method by Zang and Gudmundson
a).

A V-shaped Crack

A square plate containing a V—shaped crack subjected to uniform shear on the outer
boundary is considered, see Fig.2. The cuter boundary of the plate was modelled by 72
elements and each straight part of the crack line by 22 elements. For comparison, a
finite element calculation using the program ADINA with 8-noded isoparametric
elements was performed for the same geometry. At the two crack tips quarter point
elements were used to simulate the right singularity. No special consideration was taken
to the singularity at the corner B in the FEM calculation.
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Fig. 2. Geometry and loading for the Fig. 3. Crack opening displacements for
V-shaped crack. the V-shaped crack calculated
with E/7o = 205, v= 0.3. The
squares denote “the present
method, the crosses the method
by Zang and Gudmundson (1988a)
and the solid line the FEM results.
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The integral equation for the tractions along the crack line was utilized by Zang and
Gudmundson (1988a) to solve the problem. This formulation enforces two constraint
equations at each kink. Numerical results presented in that paper showed that
symmetrical constraint equations can be justified in almost all situations. In the present
problem, however, antisymmetrical constraint equations have to be applied at the kink,
since the corner is dominated by a pure antisymmetrical mode. The outer boundary was
similarly modelled by 72 elements and for each straight crack line 25 Gauss-point were
used.

In Fig.3, the crack opening displacements Auy and Aup are presented by the three
methods. It is observed that a good agreement between the solutions of the alternative
methods is achieved.

A Z-shaped Crack

A rectangular plate containing a Z-shaped crack is considered, see Fig.4. The plate is
subjected to a uniform tension on one end and has a sliding support on the opposite end.
The outer boundary of the plate was discretized into 90 linear BEM—-elements. The
middle straight part of the crack line contained 20 elements and each of the two other
straight parts of the crack line contained 5 elements. Totally the plate was modelled by
about 250 degrees of freedom. For comparison a finite element calculation using the
program ADINA with 8-noded isoparametric elements was performed for the same
geometry. Again the method presented by Zang and Gudmundson (1988a) with
symmetrical constraint equations at each kink was used to solve the same problem.
Using this method, the problem was modelled by 90 elements for the outer boundary, 25
Gauss—points for the middle straight line, and 15 Gauss—points for each of the two other
crack lines. In Fig.5 the crack opening displacements computed with the present method
are compared to the other two methods. Also in this case the agreement is good.

DISCUSSION

Integral equations for the resultant forces along the crack line was used in this
investigation to solve problems of a finite elastic plate containing internal piece-wise
smooth cracks. The integrals along the crack line contain a weak logarithmic singularity
and they are valid for every point along the crack line. The collocation points can thus
be selected in a free manner. Furthermore, no constraint equation, as was the case in the
paper by Zang and Gudmundson (1988a), is needed at a kink. The present integral
equations can be applied to any internal crack configuration and for all kinds of loading
conditions.

In the authors' previous work (Zang and Gudmundson 1988b), cracks with different kink
configurations in an infinite plate were examined in detail utilizing the same kind of
formulation as in the present analysis. A very good convergency rate was observed for
crack problems in both infinite and half infinite geometries. The numerical results in this
paper indicate that the present method also can be an effective and reliable tool for
investigations of internal crack problems in finite geometries.

From the discussion above, it may be concluded that the method employing integral

equations for resultant forces along the crack line can be more efficient than the method
using traction type equations.

AFR-3—1
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Fig. 4. Geometry and loading for the Fig. 5. Crack opening displacements for
Z-shaped crack. the Z—shaped crack calculated

with E/P, = 205, v = 0.3. The
squares denote the present
method, the crosses the method
by Zang and Gudmundson (1988a)
and the solid line the FEM results.
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