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ABSTRACT

An economic finite element strategy is developed for the estimation of
Stress Intensity Factors (SIF) in Linear Elastic Fracture Mechanics (LEFM)
problems involving cracks in structural components. Considering two-—
dimensional problems, the finite element model consists of 5- noded
triangular isoparametric regular/singular elements located at the crack tip
and 4-noded quadrilateral elements in the remaining part of the structure.
The square root singularity is achieved in the 5-noded elements by moving
the mid-side nodes to the quarter point position (as in the case of 8-noded
quadrilateral/6-noded triangular elements). Modified Crack Closure Integral
(MCCI) method is adopted which generates accurate results for a relatively
coarse mesh. The relevant equations for strain-energy-release rates (G) are
derived for 5-noded triangular element and the SIF are computed. The model
is demonstrated by numerical studies for a centre crack in finite plate
under uniaxial tension.
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INTRODUCTION

Finite element technique is the most preferred method in 1linear elastic
fracture mechanics (LEFM) for the determination of stress intensity factors
(SIF) at crack tips in structural components. Various approaches (Gallagher
1971, Atluri et al., 1975, Barsoum 1976) using singular and non-singular
elements have appeared in literature which is quite extensive. Most of
these techniques (except a few approaches with singular elements where SIF
are used as degrees of freedom) basically carry out stress analysis of the
cracked structure. Using this stress and displacement distributions direct
methods such as displacement or force extrapolation (Chan et al., 1970, Raju
et al., 1977) and indirect methods where estimation of energy parameters
such as strain-energy-release rates (Rybicki et al., 1977, Dattaguru et al.,
1982) and J-integral (Rice 1962) are used to determine the SIF. The later
methods involving the estimation of energy parameter are generally
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economical and are capable of predicting accurate results with coarse
meshes.

The present paper deals with modified crack closure integral (MCCI) method
wherein  strain-energy-release rates are estimated leading to the
determination of SIF. An economic finite element solution is presented in
this paper for cracks in two-dimensional structures using this method. The
finite element model consists of 5-noded triangular  isoparametric
regular/singular elements at the crack tip and 4-noded quadrilateral
elements in the remaining portion of the structure. The singularity is
achieved at the crack tip by moring the mid-side nodes to quarter points (as
presented by Barsoum, 1976 for 8-noded quadrilateral/or 6-noded triangular
elements). The MCCI equations for strain-energy-release rate estimation are
derived for 5-noded regular/singular elements for both I and II modes of
fracture. A procedure, similar to that used earlier ( Krishnamurthy et al.,
1985 and  Ramamurthy et al, 1986 ) for 8-noded regular/singular
isoparametric elements is employed, here, to derive MCCI equations for G

and G;,. Numerical results are presented for the case of central crack in a
finite” plate under uniaxial tersion. The derivation of the equations for
GI' G and GI for three-dinensional through and part-through (semi and
quarter elliptical) cracks using the MCCI are nearly complete (Radari
Narayana 1988).

ANALYSIS

Element Shape Functions

5-noded triangular isoparametric serendipity element in real and natural
coordinate system s shown in Fig. 1(a) and (b). The shape functions
defining the displacement distribution in this element are given by
Zienkiewicz (1971)

{u} = [Ni] {u.} m
where L
1= -8-n) (1-28-2n); Ny =-£ (1 -28-2n)
N3=—n(1—2£-2n);N4=4n(1—£_n);N5=4g(1_g_n)

and U; are the nodal displacements.

as
y

The edge 1—5—2 (or 1-4-3) in the real and natural coordinate system is
shown in Fig. 1(c). The transformation between the two systems is given b
_ 2

r a0+a1£+a2€ (2)
Hith' the mid-side node is at the mid-points and proceeding in the same way
as given by Barsoum, 1976 it can easily be shown that here too, shifting the
m1d—s1del node to quarter point, there is a 1/ Vr singularity in 3¢/ ar
and so in the strains (or stresses) at the origin 1.  So, by the choice of

both mjd—side nodes 4 and 5 at quarter points on the respective edges, (Fig.
1(d)) isoparanetric singular 5-noded element is obtained,

Finite Element Model

A finite element model using isopirametric 5-noded triangular elements near
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the crack tip and 4-noded quadrilateral elements 1n'the remain1ng ;eg;Qn.ls
shown in Fig. 2. This is a typical mesh wi?h the dimensions 'OE the 12;e$
plate shown (H/w =6, 2a/w = 0.2 to 0.8 in steps of 0.1) wit e m
consists 96 elements and 250 degrees of freedom.

Crack Closure Integral

i i in— -release rate (G),
ack closure integral estimates the strain-energy-re e rat (
EgzedC;n Irwin's (1958) concept, that when a crack grows by an 1nf1n1tes1ma1
increment, G 1is equal to the work required to c]o;e the cra;k to zﬁs
original length. Taking polar coordinate systgm with the or1g1p at e
crack tip (Fig. 3), Epe above statement can be written for GI and G as
a

= =x, 6=0 r=0a - x,0 =7) dr
6, = Aagg (1/2 Aa)£ 0y (r=x ) uy (

6y =, Lt (1/2Aa)oﬁ?xy (rex, =0) u_(r=fa -%,8 = m) dr (3)

II=A+O

h .
- e;e(r 8), o, (r,8)= Stress distribution ahead of the crack tip
y L ’ xy

. s . . -

6 r,0) = Relative sliding and opening displacemen
ux(r. b uy( e between points on the crack faces
Now, SIF for mode I and mode II can be obtained wusing the standard

relations.

Modified Crack Closure Integral

i integral is modified
il the equation (3) to evaluate the crack closure int | i
E: r%gims ofq nodal forces and nodal displacements to suit finite element

method.

first place, the equations for strain—energy—re?ease rate will be
SZesé:t:ge for thg non-singular element in which the mid-side noées ]ére as
mid point. Figure & shows the nodal forces on the crack extension ine iﬂ
the crack opening displacements at the nodes along the crack. Aisumlng 'oﬁ
distributions for displacenents and for the stresses on the crack extensi

line as
1 |2
u(g') = ag +a; g+ a, £
’ 2 )
= b, + b,E +b, &
Oy(& ) = by + b 2 -

i i i i i i f nodel values.
i ossible to derive these distributions in @erms o _
iﬁe 1?afc)er case of stresses this is done by finding _the equ1va1egtb nodg1
forces for these distributions.Mow, the constaqt ag, a, and a, an 0* 1
and b2 could be solved from the nodal values (Fig. &) as

+ 2 uy,j-? and

' i
ag = Yy, j-2° a, = 4 Uy 51 = 3 Uy, §-2 and a, Uy, 5-1
bg 6 -1 2 Fy.j
by | = (3/2 ra) [-24 10 -16 Fy.j+1
(5)
bZ 20 -10 20 Fy.j+2
AFR3—G
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The final expressions for strain-energy-release rates in mode I and mode II
could be derived as

G 1/2 4 F . . 3 .
I (1/2 8a) [ voj Yyei-2 + Fy,3+1 uy'J_1] and
(1/2 ba) [Fx.j

GII X,y j+1 ux,j—1] (6)
The 1limit asAa —> 0 is satisfied numerically by using a small element at
the crack tip. These expressions are same as those obtained for 8-noded
quadrilateral elements with mid-side node at mid-point by Krishnamurthy et
al., 1985. Expressions identical to Eq.(6) were used earlier by Ruchholz et
al., 1984, and Grebner et al., 1985 for linear strain triangular (LST)
elements to obtain (G) values for axisymmetric crack problems (in the

analysis of debonding of thermslly stressed fibre-reinforced composite
materials).

ux.j—Z + F

b) Now, we will obtain MCCI eyuations for (G) for 5-noded triangular
singular element. The nodal forces and crack opening displacements for 5-
noded singular elements are shown in Fig. 5. Here, shifting the mid-side
node to quarter point results in strain (or stress) singularity. So, the
expressions for displacements and stresses on the crack extension line can
be represented as

uy(E')= a\0+a1tz'+a2 5'2
oy(g ) =(by/ &) +by +by€ (7)

The constants a,,a, and a, and bh., b d tai i
e (F1g.15) ° 2 0 1+ an b2 are obtained in terms of the

an = 0, = . = = -
0 a 4uy,3—1 Uy, §-2 and a, = 4uy,j—1 + 2uy'j_2 and

bO 3 -1/2 1 Fo.
Y3
b.I = (3/2npa)| -12 5 -8 F%jﬂ
b, 10 -5 10 Fy. 42 (8)
ggiaiﬁggnziormation for the singulir element between and systems can be
A+e)? 4w s+ £92 - 4 (9)
Now using Egs.(7) and (9) in Eq. (3) and on simplification the expressions

for strain-energy-release rates can be derived as

G =(1/24 C,. F .
I D Py g+ Cg Py g * Q3 Fyga2) vy i
+ (Cpy F .
o1 Fyog * Co2 Fy a1 # Co3 Fy 42) Uy, 4p] and
GII =(1/2Aa) [(C F . +¢C F + C

13 Fx, j42) Uy, 521
22 Fx, 01 + Q3 Fy, 342) Yy, j-2] (10)
where Cyq = 331/2 - 52, ), = 17-217/4, ¢,y = 21 /2 - 32

Xy J 12 " x, j+1
+ (C21 Fx,j +C

Co1 =14 - 331/8, Cpp = 217/15 - 7/2, C,y = 8- 217/8

2070

These expressions are same as those obtained for 8-noded singu?ar elements
by Ramamurthy et al., 1986. Once again the limit Aa —> 0 is appro§ched
numerically by taking the crack tip element size to be as small as possible.

NUMERICAL STUDIES

Numerical studies were carried out on the problem of centre crack in f1n1§e
plate under wuniaxial tension for various crack .sizes. The crack tjp
essentially deforms in mode I. The equations derived above were wused in
finite element models using both regular and singular 5—nodeq elements at
the crack tip to evaluate SIF. These results were cqmpéred thh reference
solution (Rooke et al., 1976). The maximum deviation with reference
solution is within 1.5 percent. It is important to note that degrees of
freedom used in the present model are varying between 200-250 where as the
degrees of freedom for an equally accurate result with 8-noded quadrilateral

elements is more than 300.
CONCLUSION

5-noded regular and singular elements are used at Fhe grack tip for
estimation of stress intensity factor (SIF) in 2-dimensional fracture
problens. The SIF are estimated through strain—energy—re?egse rates
obtained by modified crack closure integral (MCCI).. Combining these
elements with the MCCI is found to result in an economic SO]utTOn. . The
advantage will be more if a similar technique is used for 3-dimensional
problems (Badari Narayana 1988).
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Table 1 Comparision of SIF from MCCI method and standard - 2 1 2 e
reference (Rooke et al 1976) values: CCT ©0 2,00 1O o)

specimens under uniaxial tension (a)

a) SIF from MCCI method using 5-noded triangular
regular elements

Present KI/ ovTa (rex/l)
a/w FEM Column 2 Column 3 r=0 r=p ! x
8-node FEM Reference /22—
solution solution Column 4 Column 4 ! J ¢
Krishnamurthy et al (1985) ol 2z *
1 2 3 A ©
0.2 1.0235 1.0272 1.0254 0.0987 1.0017 .
0.3 1.0737 1.0505 1.0594 1.0134  0.9916 Fig. T Boneded tRIGTGOlAr slpment o e
0.4 1.1273 1.1038 1.1118 1.0139  0.9928 gg Pagular element in X-Y plane
0.5 1.1947 1.1887 1.1891 1.0047 0.9996 ¢) one dimensional element mapping
0.6 1.3234 1.3108 1.3043 1.0146 1.0049 i t in X-Y plane
0.7 1.4808 1.4989 1.4842 0.9977  1.0090 d) stngular slemens to =P
0.8 1.8135 1.8244 1.7989 1.0081 1.014
b) SIF from MCCI method using 5-noded triangular %
singular elements i, T f f f
Present KI/ ov/ra 5/
a/w FEM Column 2  Column 3 ! //<
8-node FEM Reference 3
Solution Solution Column 4  Column 4 /\b) T
Ramamurthy et al (1986) ///; J///
1
1 2 3 4 Zé
0.2 1.0124 1.0213 1.0254 0.9873 0.9960 | 2a
0.3 1.0619 1.0473 1.0594 1.0023 0.9885
0.4 1.1149 1.1026 1.1118 1.0027 0.9917
0.5 1.1787 1.1887 1.1891 0.9913 0.9926 it
0.6 1.3093 1.3121 1.3043 1.0038 1.0059 ! w r:
0.7 1.4648 1.5007 1.4842 0.9869 0.9884 : AN/A
0.8 1.7925 1.8273 1.7989 0.9964 0.9844 | J ; } } J l‘_o—-f
T % (b)
(a)

Fig. 2. Center cracked tension specimen
a) Part of the structure analysed
b) Finite element mesh for CCT - specimen
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X, Uy

Fig. 3. Original and extended crack configurations

j_.2 D J"C' FY;i FYv]+| FYaJ+2
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- . i j+1 j+2
Uy,j—z UY:J“'

Fig. 4. Crack opening displacements and nodal forces:
5-noded trianguler regular elements

s N ¢

Fig. 5. Crack opening displacement and nodal forces:
5-noded triangular singular elements

2074


User
Rettangolo


