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ABSTRACT

The three-dimensional problem of a penny-shaped Dugdale crack is considered. Beyond
the known mode I case, in particular the case of pure shear loading is modelled and inve-
stigated. Analytical closed-form solutions are given that show a marked analogy to the
mode I case. By an appropriate superposition the penny-shaped Dugdale crack under
triaxial (mixed mode) loading can be treated in a convenient manner. The derived and
presented description is of a clear closed-form analytical character which for applicability

1s useful.
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INTRODUCTION

In the field of elastic-plastic fracture mechanics the Dugdale crack concept is a well
established tool to describe the localized yielding that accompanies elastic-plastic crack
growth. Numerous contributions, generalizations and applications repeatedly have pro-
ved the usefulness of the Dugdale crack concept. Above all, the plane problem of a
straight Dugdale crack has been considered so far, predominantly for pure mode I loa-
ding (Chell, 1976; Dugdale, 1960; Gross, 1984; Hahn and Rosenfield, 1965; Herrmann,
1987; Janson, 1977; Newman, 1968; Seeger, 1973; Tada et al., 1985; Theocaris and Gdou-
tos, 1974) but also for mode II (Becker and Gross, 1987; Bilby et al., 1963; Tada et al.,
1985) and for mixed mode (Becker and Gross, 1988) loading. -
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Three-dimensional Dugdale crack problems have attained less attention till now (Matt-
heck and Gérner, 1984; Mattheck and Gross, 1985; Tada et al., 1985). In general their
analytical treatment involves markedly more intricacy. Nevertheless three-dimensional
crack problems are of essential importance — most crack-like defects within materials
strictly speaking necessitate a three-dimensional analysis.

MODE I PENNY-SHAPED DUGDALE CRACK

As an idealized defect a penny-shaped crack of radius a is to be considered in an in-
finitely extended isotropic linear-elastic material. Under remote loading the real crack
is enlarged by a “yield ring” to a fictitious penny-shaped crack of radius b in the same
plane. This is illustrated in Fig. 1 together with the used cartesian coordinates z, y, z
and the cylindrical coordinates r, ¥, z. On the yield ring a normal stress oo respectively

Fig. 1: Penny-shaped-Dugdale crack

a shear stress o are prescribed. In an ideulized way these quantities describe the normal
and shear stress proportions that are transmitted by the yield zone when plastification
takes place. The yield ring width b— a is to be reconciled with the given stresses in such
a manner that along the circular crack front stress singularities are as little as can be.
The stress intensity factors Kr(¥), K11(9), K111(9) ideally vanish.

This requirement can be met without particular problems in the case of a pure mode [
loading, that means for uniaxial tension ¢ in z-direction. In this case the stress intensity
factors Ky7, Kyy1 vanish anyway (as well as 7o) and the demand K; = 0 is guaranteed
by the condition (Tada et al., 1985)

a a?
2 e 1 = e 1
5 p (1)
. a az
respectively = = 1- 7o (2)
()

Relation (1) is the »penny-shape-analogue” of the following equation which holds in the
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case of the corresponding plane mode I Dugdale crack problem:
=cos — . (3)

Equation (1) gives the following "relative yield zone size”:

b— a) o?
=1-41-5 . 4
( b penny—shaped Ug ( )

On the other hand in the case of the corresponding plane problem equation (3) gives

b—a _1 o
b plane - —2—0'_0 . (5)

For a comparison in Fig. 2 the relative yield zone sizes according to (4) and to (5) are
represented as functions of stress. Obviously in the whole range 0 < o < oo the yield
ring width of the penny-shaped Dugdale crack is smaller than the yield strip length of
the corresponding plane Dugdale crack problem — in the three-dimensional case yielding
is somewhat inhibited.

b-a
1.04 3
4 ——(4) penny-shaped J7F
1 ———(5) plane & 5
05
i e
0 t /0'0

Fig. 2: Yield zone size as function of stress

MODELLING OF THE PENNY-SHAPED DUGDALE CRACK
UNDER SHEARMODE LOADING

Basic Setting

The term “shearmode loading” is used here to denote the case that only remote shear
stresses 7., and 7, are applied with respect to the introduced z-y-z-coordinate system.
Without loss of generality it can be assumed that only 7., = 7 is different from zero.
Differently from the pure mode I case the adherence to the penny-shaped form of the
fictitiously extended crack (radius b) is an additional model assumption in the shearmode
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case. This assumption is justified in the same measure as the Dugdale crack condition of
vanishing stress intensity factors can e fulfilled. For the Dugdale crack modelling the
decisive advantage of the penny-shape form is that it makes the corresponding three-
dimensional crack problem mostly accessible to a closed-form analytical treatment. A
survey of appropriate methods and formulas for example has been given by Kassir and

Sih (Kassir and Sih, 1975).

From the given homogeneous remote shear stress 7., = 7 the following stress intensity
factors Ky and Ky (Tada et al., 1985) result for the penny-shaped crack lying in the
z-y-plane (Fig. 3):

K&(®) = W;_V—)T bcosd
KS,(9) = el . N - (6)

e 2= v)

The quantities K and K§; vary aleng the circular crack front — they are functions
of the angle 9. From an exclusive loading of the Dugdale yield rings on the other hand

Fig. 3: Penny-shaped Griffith crack under pure shear

stress intensity factors K (9) and K}.(9) result that still have to be derived. Ideally the
yield ring width b — a and the given stresses harmonize in such a way that the Dugdale

crack conditions

KF()+Kp(9) = 0, ,
K§(9) + K (9) = 0 (7
hold identically along the circular crack front. Unlike in the corresponding plane case
the relations (7) comprise two conditiens for functions of . For an underlying constant

shear stress value 7., = 7o on the yield ring it cannot be expected that the conditions
(7) can be fulfilled both identically by the mere choice of the yield ring width b — a.
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But it turns out that the requirement (7) can at least be met in the sense of a good

approximation.

For the derivation of the stress intensity factors K;, K}, use is made of already available,
rather general formulas (Kassir and Sih, 1975). For a penny-shaped crack (radius b) by
a pure shear load of the crack faces the following boundary conditions are supposed to
be given:

o,(r,9,0) = 0, r>0,0<9<2mr,

Trz(r,9,0) = ge(r,d), 0<r<bd,0<9 <27,

79:(r,9,0) = ¢(r,9), 0<r<b,0<9 <2, (8)
ur(r,9,0) = ug(r,9,0) = 0, r>b6,0<9<2r.

The prescribed shear stresses are specified by the functions g.(r, ) and ¢,(r,Y) whereby
the following fourier series expansions hold:

ge(r,9) = ian(r)cosnﬂ ;
gs(r,9) = ibﬂ(r)sinnﬂ . 9)

For each n (n = 1,2,...) two auxiliary functions are introduced by a,, and b,:

3 t
t~nt2 dr

P = —gogeveR ) )~ b=

Il

Bi(t) = L0i(t)+ e { [ P an(r) + ba(r)| s (10)
2 2621 5 VitZ —r
+(—1—+2l)1/r"[an(r) - bn(r)]\/mdr}

2—v
0

Then the stress intensity factors Kyr(9), Kyrr(¥) along the circular crack edge can be
represented in the following way (Kassir and Sih, 1975):

b 0o
Ki(¥) = —#o/rzao(r)% + gibig ;[@1(6) — ®,5(b)]cosnd
Kin(@) = —?if—G— 3 [(1 = v)®,(b) + ®o(b)]sinnd . (11)
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Constant Shear Stress on Yield Ring

Let a yield ring shear stress 7o be prescribed that is of a constant amount and a constant
direction (Fig. 4). Then from (9) and (11) the following quantities g, ¢, and stress
intensity factors Kfj, K}, result:

q(r,9) = mocosVH(r —a) ,

q;(T‘, 19) = —‘rosinﬂH(r—a) y TE b s (12)
. 1 forz>0 .. .
with H(z) = { ¥ For & 20 (Heaviside-function)
- 4 / a? va?
Kj(9) = —m_—l/)TO bcosdy/1 — 7 (1 — EF) ,

Kiu(9) = %Q_—”i)m bsinﬂ,/1—§(1+2—(1”_—y)§;> ; (13)

With the given stress intensity factors (6) and (13) the Dugdale crack conditions (7)

Fig. 4: Penny-shaped crack under yield ring shear stress

can be satisfied in a good approximation if

2 v a'Z

—— 1 e 1 . 14
e €1 R € (14)
The conditions (7) then give the folloving relationship between the quantities 7, 7o, a
and b:

a T2
Z = - — 1
b 1 78 (15}
. T a?
respectively — = /1 — 7 (16)

The analogy to the pure mode I relations (1), (2) is obvious. In the most inconvenient
case, namely when the yield ring is very small (a = b), the conditions (14) are satisfied
in the same measure as the factor »/2 is smaller than 1. Things are the more favourable
the larger the yield ring width is, as this gives a decreasing factor a®/b%.

Slightly Variable Shear Stress on Yield Ring

By a slightly modified yield ring shear stress the Dugdale crack conditions (7) both
can be satisfied even exactly. To this end the quantities g. and g, are supposed to be of
the following kind:

T.cosVH(r —a)
—7,sindH(r —a) . (17)

gc(r,9)
gs(r,9)

This corresponds to a shear stress loading on the yield ring whose "radial component”

Tssingd

Fig. 5: Yield ring shear stress

7., and "circumferential component” 7y, are of different angular amplitudes:

Tre(r,9,0) = 7.cosdH(r —a) ,
792(r,9,0) = —7ysindH(r —a) . (18)

Unlike the presuppositions before, the now considered stress vector with the components
(18) in general has a non-constant amount as well as a non-constant direction. The

resultant amount 7, is given by

7, = /T2 cos? ¥ + 72sin’ Y . (19)

The angular deflection ¢ between shear stress vector and negative z-axis-direction (Fig. 5)

is given by -
T, Sin

2 . 20
T, cos (20)

@ =13 — arctan

AFR-3—N*
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By (10), (11) the following stress intensity factors KF, Kf}; result from (17):

Kf,(l?) = —ﬁmﬁms‘l}

a2 &2 2 a? a?
1—35{75(5—1/+ 2V§)+T,(1+V—-b—2—ub—2>} ,

KE,(9) = 3\[(2 \/I;sir'ﬂ- (21)

a2 &2 2 a? a?
l—ﬁ{rc<l— v— b2+2ub>+‘r,(5 4v +§+l/z§)}

The Dugdale crack conditions (7) with K§, Kfj; according to (6) and KF, K¥f}, accor-
ding to (21) can be satisfied exactly and the validity of (15) respectively (16) can be
preserved if the following choice of the quantities 7. and 7, is made:
_ 8 — 8 + 202 + (4 + 2v — 2v?)a?/b?
Te T TORT8ut 207 + (4 — dv 4 v2)a? /b2
8 — 8v + 2v2% + (4 — 10v + 4v?)a?/b?

- . 22
K 7078 8yt 207 + (4 — 4v + v2)a?/b? (22)

According to these two relations the shear stress quantities 7. and 7, depend on the ratio
a/b. For a/b = 0 they are equal to 7, otherwise they are of different values. In Fig. 6
this is depicted for v = 0.3. In the lesst convenient case a/b = 1 the reciprocal difference

Fig. 6: Shear stress quantities 7. und 7,

takes its maximum, but even in this case 7, and 7, lie within a tolerance range of less than
4+20% with respect to 7o. In consequence of (19) this finds a corresponding counterpart
in the resulting 7,(¥)-behavior. In Fig. 7 7,.(9) as well as (V) are represented for three
different ratios a/b. The deviations d the angle ¢ from zero are not immoderate. Even
in the least convenient case a/b = 1 the angle ¢ does not exceed a range of £11°.

In all, the yield ring modelling given by the relations (17) - (22) does not give rise to
con51derable deviations from a yield shear stress 7o that with respect to amount and
direction is constant. This sustains tie adequacy of the presented simpler Dugdale crack
modelling, given by an actually consiant prescribed yield stress 7o, and supports its use
as a good approximation.

2296

T
7
a) To _alb=10

i Za/b=05
1'04v\0/b=0.1

90" 180°

Fig. 7: a) 7,-behavior
b) ¢-behavior

PENNY-SHAPED DUGDALE CRACK UNDER TRIAXIAL LOADING

A more general, triaxial loading is given for the penny-shaped Dugdale crack if the
homogeneous remote stresses o, (o, > 0), 05, Oy, Tzz, Ty and 7, are applied simulta-
neously.

The stress component o, gives rise to a mode I loading (¢ = o). The components 7.
and 7,, produce a shearmode loading with the effective resultant shear stress

T= T+ (23)

¥ = arctan Ty ; (24)

Tzz

in the direction

In order to meet the Dugdale crack requirements (7) as well as this of vanishing K -stress
intensity factor both a normal stress oo and a shear stress 7o (in the direction given by
(24)) are prescribed on the hypothetical Dugdale yield ring. Doing so corresponds with
a superposition of the already considered mode I and shearmode loading cases, that with
respect to the yield ring size is essentially nonlinear.

Including the special cases that either oo = 0 or 79 = 0, the validity of (1) and/or (15)
can be described by the following single complex relation:

a_ g a,+i,/1’§z+7ﬁz :
b= N e (25)

00 + 1T
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This is equivalent to the following two real equations:

o _ |, _ ot -
b A+

0.0 = oon/TEL +TL . (27)

Compared with the pure mode I respectively shearmode problems, equation (27) is an
additional mixed mode condition. FYor given o, Tz, Ty, it prescribes the reciprocal
ratio of oo and 7. This allows to interrelate the two stresses oo, 7o to a single yield
stress quantity oyiea. It is proposed to do so by use of the von Mises yield criterion
2g!,0l; = 0%, Herein of; denotes the deviatoric stress components. On the Dugdale
yield ring this gives

Ug + 02 + 0‘3 — oo(0z +0y) — 020y + 313 + 37':y = a:‘-c,d . (28)

Hereby the influence of the ”crack-parallel” remote stresses oz, oy and 75, "within” the
yield ring is taken into account by correspondingly equal quantities oz, oy, Tzy. The
relations (27) and (28) together allow to determine the stresses oo and 7o explicitly from
Oyietd and the given load 0z, 0y, 02, Tay, Tzz, Tyz:

e B o.(0z + 0y)
0T 2(02 + 372, + 372,
\/02 oz +0y)2 + 4(0? + 37%, + 372 )(Uwu 02 — 02 + 0,0y — 372))
2(c} + 372, + 37),) ’

= __ oi(0z+0y
To =Tt 73‘{ 2(o? + 372, +372,) %)
\/af(a, +0y)2 +4(02 + 37}, + 372 )(ameu 02— 02+ 050y — 372,
T 2(c? + 372, + 372)

The presented modelling of a shearmode and a triaxially loaded penny-shaped Dugdale
crack is of a pleasing closed-form analytical character. The given formulas are easy to
survey, which for applicability is welcome.
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