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ABSTRACT

By means of conformal mapping on a fixed region we built up a singular
crack tip element available for a variable crack length which gives the
proper singularity for displacement fields, and allows us to compute any
order of the total energy derivative whith respect to the length of the
crack.

INTRODUCTION

The prediction of the behaviour of cracked solids in plane elasticity
requires in particular the knowledge of the stress intensity factors
linked to a global quantity: The energy release rate G or the first
derivative of the total potential at equilibrium E whith respect to the
crack length 1.

Nevertheless, for a complete prediction of the evolution it can also be
necessary to study higher order derivatives of E. The stability depends
on the second derivative and further, higher order derivatives are
indispensable for postcritical behaviour of interactive tension crack
problems (Nemat Nasser-1980 [1], Q.S.Nguyen-1985 [2]).

With the traditionnal Finite Element Method, in the presence of a crack
we have to refine the mesh around the crack tip in order to take into
account high stress gradients in this area. Many have been trying to
solve these difficulties by using several kinds of crack tip elements
whith shape functions that give the proper singularity (Tracey-1971[3],
Barsoum-1976[4]). Tsamasphyros (1986[5]) uses conformal mapping which
opens the crack tip and thus generates an optimum mesh on the regular
transformed region.

However, a complete tool for numerical prediction of crack behaviour is
still hard to implement. The increase of crack length
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requires either locally remeshing or breaking elements. This makes still
very difficult the numerical evaluation of higher order derivatives of
the energy E. Obstacles occur when one studies the velocities problem

because u and o are of higher order of singularity than u and o and
don't belong to the usual functionnal spaces. Stolz and
Q.S.Nguyen(1985[6]) circumvent this difficulty by solving the elastic
problem in a referential moving with the crack tip. Destuynder(1982[7])
proposes using a fixed reference region which can be the initial state
of the body analogous to the Lagrangien method in the case of
displacements.

In this paper, we are dealing with the problem of straight cracks in
two-dimensionnal bodies. We will also show how to generalize our process
in the case of curved cracks in plane elasticity. Our purpose is to
create a singular element located at the crack tip, of the shape of the
unit circle with a radial crack of length h<l. The element is
transformed into the inside of the upper half unit circle by means of a
conformal mapping . The stiffness X(w) of the element will be
calculated by solving the elastic problem in the reference domain with
arbitrary boundary conditions. We undertake this task by a boundary
element method based on Muskelishvili potentials(1933[8]).

Besides providing the proper singularity, this method allows us to build
continuously with respect to h the total energy function E(h). In
particular, one can for instance calculate the accurate length of crack
h , if it does exist which equilibrates the external loading and
corresponds to a stable state ie:

h, as G=2v and E;2>O

This corresponds to a minimization with respect to h of the functional
total energy plus dissipated energy E+2Yh on the set of lengths h which
correspond to an advance of the crack(Fedelich and Berest 1987[9]).

FORMULATION OF THE BOUNDARY INTEGRAL EQUATION

S being an elastic cracked two-dimensionnal solid and D the singular
element at the crack tip ; let's denote (ux,uy) the displacement field
components and (T ,,T y) the traction components on an element ds of
outward normal n.

o.,cos(n,x) + axycos(n.y} =

o, cos(n,x) + cryycos(n,y} =
we note T = T, +iT, , U = ux+iuy,z x+iy we specify with the exponent+
the values inside D and with - the values outside D and:

F(Z)=1J%(Z)Tds (see fig.1)
So
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fig.2

Let's handle the elastic problem inside the element D with given
external forces T * or displacements U*. The boundary conditions on 3D

can be expressed in term of two holomorphic functions in D, ®(z) and

¥(z)
' e _ A+3p (1)

2YU* (z) = xP(z) - z®' (z) -¥(z) where X = Ve
F(z) = ®(z) + z¥ (z) +¥(z) (2)
The conformal mapping:

_E24h-
g Sl =g T afE) (3)

-(h-1)E2+1

transforms the interior of the upper half unit circle into the %nside of
the unit circle with a radial crack of length h (see f"lg ;). In
particular the point O in the E-plane becomes the crack tip in the

z-plane thus w' (0) = 0

C
3¢

fig. 3

i iti i E)=b(w(E))
Let's rewrite the boundary conditions in term of ®(
£(E)=F(0(E)), u' (E)=U" (w(&)), t *(E)=T"(w(%)) and ¥(&)=¥(w(E)) on the
half circle 8C . once removed the half circle of center 0 and radius &

(see fig 3)
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¢' (0)

2uu* (o) = xp(o) - w(o) - V(o) where o € 3C, (4)
w' (o)
_ ¢ (o) —
f(o) = @(0) + wW(o)—/—= + Y(o) (5)
w' (o)
For all & outside 8C_ the integral —-}— Mdo vanishes because (o)
L € 2im|dC o-&

is the boundary value of some function W(&) holomorphic inside 8C.. We
deduce from relation (5)

Af ey 1 f e 1 o
2infac€ o-& o= Zi‘rrJ.ace o-& 7 ZiNJaC w' (o) (0-E, ) (o}de (6)
€ L

'(o
In the same way Z' EU; is holomorphic inside 9C_hence:
1 w(o) ’ 1 w(o -w(0
21—“J —_— (o)do = EJ - (o) (0) do (7)
oC, w (o) (o-&) aC, w (o) (o-E])
X W -w
Being ensured that the kernel &(o) = M is bounded as o

' (o)
tends to O we can let € go to the value O and 6C. to 0C. Therefore :

T (. . C) P N .. -
ABg) = 2injac (o5, & zm[ac oy ¥ iede ®)

where: A(§ ) = ZL‘IT-J‘ —(f—(g)—)da
1TJac (o=,

Let & tend to some point o, of dC (remaining outside 9C). We can

evaluate successively the limit of each integral in (8).

) ’ 1 flo) -f(o))
lim A(EL) = A(UL) = '2; —-———(—T——————do
€ ~0, a3C o-0,)

Using the fact that ¢ (§) is holomorphic inside 8C we obtain:

tm L[ 29 o maes [ w o
g, -0, 2iMac (0-5.) 9)do = 52l oc #(Ow0)@ (0)do (9)
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where #(o,0,) = §(0)-5(a,)

At last, as a consequence of the Plemelj formulae:

g, ¢(0) e 1 ¢(o)
Pty (st sy = - & .. vl A7 10
EilmLZi"JaC = o ce(o) 257) 5o (05, ) o (10)

Taking the principal value of the integral on the right-hand side and

+ +
c=1/2 when o # -1 and c=1/4 when 0,=-1 (corners). Using the fact that
¢(0) must be the boundary value of a function holomorphic in C we have:

1 (o) _
_C(P(O'L) - E-I;J;C (U_-E]jda =0 (11)

Taking the conjugate of (11) and adding to (10) one obtains :

] 1 @(0) o i, L F == L
lin mfac o, 10 = ~2a o) zinfac $(a) dlog [—]

E]_—’GL O'—O'L

which is a regularization of the kernel of the integral of the right
hand side of (6).Finally integrating by parts in (9) we obtain a boundary
integral equation on ¢ with regular kernel

Ae— 1 —_— oL 1

—2cp(o,) + E-i;fac (o) dLog - (@1 DH(1, 0, ) D+p(~1) IH(-1,0, ) )
1 BR(J,UL)

" Simac T‘P(O’)da = A(oy) (12)

Where [H(x,o0; )] denotes the discontinuity of #(o,0,) through the value

+
x. ( these discontinuities vanish except for o, =-1 )

NUMERICAL RESOLUTION OF EQUATION (12)

Practically we solve equation (12) by discretizing the contour 8C and
using appropriate shape functions for ¢,t*, f, and u® on each element.

On the real axis all the functions are interpolated by polynomials of o.

But on the upper half circle t * , u*, and f are interpolated by
polynomials of ¢ and o :
n
f(o) = > f P (0,0) ; p,(0,0) = a® o+...+a0+...+alo* ; 2k+l=n
m=1
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Using the fact that the edges of the crack are traction free it can be
shown that @(&) can be analytically continued in the entire circle

(&) ~,
- ¢

by @(E)=- (E)-¥(E) (with the classical

w' (8)
notation h(&)=h(&) ). Thus it can be developped in a series of positive
powers of & inside C and up to 9C. We can therefore retain (which is
confirmed by numerical results ) only positive powers of o for shape
functions of @:
p+l

(o) = 21 0., (o) Q,(0) = bj+...+blo?
m=

By choosing appropriatly the a] and the b} the coefficients f and ¢
take the values of f and ¢ at the nodes o, which allows us to assemble
easily the stiffness matrix. One is driven to compute the solution of a

linear system:
[K(w)IJ{e} = [CI{f} (13)
([] denoting matrix and {} colum vectors).

The system is unsolvable without any complementary condition on ¢ due to
the fact that every function iow(E)+Y+iY' (o,¥,Y' reals) is solution of

the homogeneous system (12). We can set for instance ¢(0)=0 and

Ime(i)=0.The relation between f and the tractions t*:

f(o) = iI:(a) £ (5) lo' (5) 1ds (14)
0

can be put under matrix form:

{f} = [B(w)]{t"} (15)

by adding (4) and (5) we obtain a relation between ¢, u*,and f,:
2pu* (o) + f(o) = (x+1)e(o) (16)

Finally, with equations (13), (15), and (16) we find a linear
relationship between the tractions and the displacements at the nodes o
on the boudary 9C:

2u[K(w) {u"} = ((x+1)[C]-[K(w)])[B(w)]{t"} (17)

This system in order to be attached to a Finite Element program for the
whole structure has to be completed by the continuity conditions through
aD :

U (z)=u* (0 !(z)) and T~ (z)+t* (0! (z))=0 (18)

CALCULATION OF DERIVATIVES OF ¢

Under a constant external loading we impose a variation 8w of
the geometry w. As long as we wark on a fixed domain, we can obtain by a
simple derivation the integral equation on &§¢@. Rewriting equation (12)
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under a compact form :
Le = A (19)

For a given variation 8w, one has to solve a boundary integral equation
with the same kernel as equation (12) and a right hand side dependent on
@ and Sw:

L@ = 8A - SLo (20)
where:
1 1 f 88R(a,oL)
= —— - - - — o
8L = ~—(@(1) I8}(1, 0, ) I+o(-1) I8H( LoD - 53)sc ~ b
1 &f(o)-86f(oy)
= o
2im) ¢ (o-0.)
Re (& w'
s (o) i S L et (n) sw(z)
§f(o) = i t* (g) " + lw (&)I——E——— ———ds
So lo' (g) | 7 (g
We obtain the relation between 6&u * , &f, and 8¢ by derivating the
relation (16) at a fixed point o:
2un 8u* (o) + &f(0) = (x+1)8¢(0) (21)

By derivating relations (18) at a fixed point z we find the boundary
conditions necessary to attach this element to the whole structure:

du’ (wl(z)) sw(w'(z))

and (22)
i ' (@1 (z))

8U (z) = Su* (wl(z)) -

_ at* (wl(z)) Sw(wl(z))

o @ (0! (z))

8T (z) + &t* (w ! (2)) =0 ;

This problem corresponds to a classical elastic problem on the initial

du* 8w
geometry with given displacement and traction discontinuities (- 30 -
W
at* Sw . X 5
and - 3 —). Once having solved this problem we can calculate the
o !
[0}

9E : . )
derivative n of the total energy. One can easily iterate this process

in order to calculate higher orders derivatives of @: &8¢,...,8"¢ as
functions of ¢,...,8 "¢ and w,...,6 "w. We obtain by this way the
d"E

successive derivatives of the total energy 3
oh™
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A POSSIBLE GENERALIZATION: NON STRAIGHT CRACKS

By composing the conformal mapping W with another conformal mapping of

the wunit circle ®, such as w, (E ) = ®, (§) we find another conformal
mapping W, ow of the inside of the upper half unit circle C into the
inside of a region O with a curved crack which is image of the
segment[-1,-1+h] by W, . this process requires the following adaptations:
For a given shape of crack in a body, one has to built the function w,
(for example by minimizing the area between the real crack and the curve
image of [-1,-1+h]; therefore, the shape of the region D is free).
Moreover, for an initial crack W;, we have to build a set of authorized
evolutions 6w, which correspond to an increase of length but preserve
the initial shape of crack W, .«

CONCLUSION

Once having solved the elastic problem in the fixed reference geometry
with arbitrary given forces, we have created a special crack tip element
which can be inserted in a Finite Element program. We have shown that
this element prevents us from having to remesh at every crack
progression. It can therefore be used for calculating any order of
derivative of the total energy E.
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