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ABSTRACT

A method using a work potential is described for the characterization of
mechanical behavior of inelastic composites with damage, but without
significant time-dependent behavior. It is based on the theoretically and
experimentally motivated assumption of path-independence of mechanical work
over limited ranges of stress or strain states. This method and, for
comparison, an approach employing plasticity theory are illustrated with
the special case of a unidirectional-fiber laminate or ply. Use of the
work-potential method for a multidirectional-fiber laminate is discussed in
the concluding remarks.
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1. INTRODUCTION

Considerable progress has been made in recent years on the development of
high strength-to-weight, tough structural composites. This behavior is
achieved in-part by laminating individual plies of unidirectional,
continuous fiber-reinforced plastic or metal. The laminates are resistant
to crack growth through the thickness if two or more fiber orientations are
used. Delamination and cracking within plies is reduced by using ductile
matrices. For organic polymer matrices, the ductility is obtained by
adding toughening agents, such as rubber particles, to normally brittle
crosslinked resins, or by using resins with little or no crosslinking
(Johnston, 1987). These improvements in material performance place
increased demands on the structural designer and those concerned with the
micromechanics of composites if inelasticity is due to both plastic
deformation and damage or if it has to be considered under a wider range of
conditions than for the brittle matrix systems.

Traditionally, matrix ductility has been treated using incremental

plasticity theory (Christensen, 1979) while micro- and macrocracking of
composites have been analyzed using linear elasticity theory (Wang and
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Haritos, 1987). In this paper we discuss an approach to characterizing
inelastic composite material behavior which is based on total rather
than incremental strains. Also, the approach uses the same mathematical
formalism for inelasticity due to plastic deformation as due to cracking on
various scales and other damage mechanisms; the term inelasticity, as used
here, refers to any stable behavior in which stress or load is not always a
single-valued function of strain or displacement. It is believed that this
unified approach simplifies the fproblem of understanding and predicting
mechanical behavior of composites with damage. Fatigue and time-dependent
behavior and thermal effects are not treated here, although approaches have
been proposed in the papers which motivated the present study (Schapery,
1987a, 1988).

Schapery (1987a) has shown theoretically that the stresses and mechanical
work of deformation are often independent of many details of the
deformation history when the inelasticity is due to micro- and
macrocracking. However, cracking is not the only mechanism that produces
this behavior. Indeed, it has been observed for a rubber-toughened,
graphite/epoxy composite in which there are probably significant effects of
shear banding in the matrix (possibly initiated or enhanced by cavitation
of rubber particles) (Yee, 1987). This limited path-independence was used
by Schapery (1988) to develop a constitutive theory that treats different
inelastic mechanisms within the same mathematical framework. Also, as
shown by Schapery (1987a), fracture analysis is simplified when this theory
is valid because of the applicability of certain equations for relating
changes in local and global energies.

Figure 1 illustrates one type of >ath-independence we have found for the
rubber-toughened composite. Rectingular composite bars with an angle-ply
layup (alternating fiber angle, 8 = * 350, with respect to the axial
direction) were subjected to various axial and torsional deformations

-
N

STRAIN

AXIAL SHERR
LINE STRAIN STRAIN 1
TYPE HISTORY HISTORY

NOMINAL SHERR STRESS - KSI

— 2,5 2,5
———————— 2,5 1,6
—_— = 2,5 3,4
—_— 3,4 2,5
—————- 1,6 2,5
b
S0z -3

NOMINAL SHEAR STRAIN

Fig. 1. Shear stress-strain curves for proportional and nonpro-
portional straining of an angle-ply laminate; Hexcel T2C
145/F155 graphite/epoxy [+-35°]6S; 0.15" thick X 0.5"
wide X 8.75" long. From Lamborn and Schapery (1988).
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through controlled movement of the end-grips. The different deformation
paths are identified in Fig. 1 by number; for example, the bottom line type
js used for axial history 1 during the first loading period and axial
history 6 during unloading, while the corresponding torsional histories are
2 and 5. The "nominal" shear stress and shear and axial strains are
quantities which are proportional to the torque, twist, and axial
displacement, respectively; the proportionality coefficients depend only on
the specimen dimensions, and are introduced to minimize the effect of
specimen-to-specimen size differences.

At the end of the first loading period, the five different strain paths
result in practically the same stress (Fig. 1) and total work. The same
behavior holds for the unloading and reloading. In contrast, unreinforced
aluminum bars exhibit significant path-dependence (Lamborn and Schapery,
1988); we do not know if fiber-reinforced aluminum would exhibit less path-
dependence.

Unloading and reloading behavior of the graphite/epoxy material under pure
axial or torsional straining is similar to that shown in Fig. 1; there is
significant hysteresis and the average slope of the loop decreases with
increasing strain at the unloading point. The stress during loading does
not usually exhibit a maximum point prior to fracture, in contrast to that
in Fig. 1. We are now investigating the damage state as a function of
deformation history using similar specimens; significant edge delaminations
have been found at the highest stresses for deformation histories Tlike
those in Fig. 1.

The primary effects of deformation history on the composite appear to be
associated with the sign of (nominal) strain rate and the strain magnitude
when the sign last changed. Although a more precise definition of limited
path-independence was given by Schapery (1988) here we shall just refer to
differences between loading, unloading, and reloading curves, and suppose
that for each case there is no effect of path (which is approximately true
for the data in Fig. 1).

The local stresses and strains (as opposed to the "nominal" quantities in
Fig. 1) are distributed very nonuniformly throughout the specimens used in
these axial-torsional tests, and thus the results cannot be used directly
in a basic material characterization of the composite. However, it 1is
unlikely that the specimens' overall behavior would exhibit limited path-
independence if the ply-level constitutive equations did not reflect this
type of behavior.

The discussion in Sections 2-4 is concerned primarily with the
characterization of the behavior of a undirectional-fiber Tlaminate
consisting of one or more plies under the assumption of this limited path-
independence. Special versions of the theory (Schapery, 1988) are used here
to illustrate it for composites. Specifically, Section 2 considers
nonlinear loading and unloading behavior, and expresses the inelasticity in
terms of one parameter S which represents the effect of microstructural
changes on the overall stress-strain behavior; such S-parameters provide
the inelasticity and, in the context of some thermodynamic formulations,
are called internal state variables. Section 3 contrasts the theory with a
plasticity model based on the normality rule, and uses the characterization
in Section 2 as an example. In Section 4 another illustration is given by
using a linear approximation for unloading behavior. Concluding remarks in
Section 5 discuss in-part the use of unidirectional ply characterization in
laminates with ply-level and larger scales of damage.
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2. A CONSTITUTIVE EQUATION WITH NONLINEAR UNLOADING BEHAVIOR

Figure 2 shows a unidirectional 1laminate or ply and the coordinate
notation, in which the x; axis is parallel to the fibers; the x3 axis is
normal to the ply plane. The stresses o. and strains e. (i = 1,2,...6)
are mechanical variables referred to the principal material coordinates
Xj.  In most of the discussion it will be convenient to use this single
index notation. As is customiry, i = 4,5,6 are used for the shearing
variables; the relationship between single and double indexed variables for
plane stress is

813 €1 Oz Ty 0157 Y

€11 T f1r fpp T Zepp T g
A constitutive equation will be proposed which accounts for nonlinear
loading and unloading behavior and which is consistent with the path-
independence of work discussed in the Introduction as well as the nonlinear
behavior reported by Lou and Scnapery (1971) and Sun and Chen (1987); the
reader is referred to these two papers for the experimental data, as space
does not permit its reproduction here. Specifically, a strain energy
density w = w(e,, S) is assumed to exist, where the microstructure state is

defined by S; only one structure parameter S will be used here, although
more could be introduced, if necessary. By definition of w,

(1)

o5 = aw/ae, (2)
In both aforementioned references strains are expressed in terms of
stresses, and thus it is helpful to eliminate w in favor of a so-called
dual strain energy density W= wo(oi, S).

W= W - ogeg (3)
(Throughout this paper the summation convention is employed, in which a
repeated index implies summation over its range.) By using (2) and
introducing differential changes in (3), it follows in the usual way that

€= - awc/aoi (4)

A form of w_discussed by Schapery (1988, Eq. (A24)) is proposed now for
characterizing ply behavior,

Fig. 2. Unidirectionil composite and coordinates.
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WO Wt P(°o’ S) (5)

w_=w (0., o.=o0(0;), and P are presently arbitrary func-
:qui. Phe ﬂgghdgnca worﬁ( ering processes in which S changes can be
shown to be independent of path if and only if S.= S(o ). ; proof of this
statement may be made by the same method as used in a Sfﬂdy of w (Schagery,
1988, Appendix A). The function S(o ) can be absorbed in the func§1ona1
dependence of P on S, and thus we may Use S=o0 whgnever S'changes without
any actual limitation in the model. Whether S”varies or is constant, the

strains are obtained from (4) and (5),

30
o= <) - (6)
1 1 aco 01.
where, by definition,
¢z 7
€ = - Bwao/aci (7)

The &€ are defined through derivatives of a fully pathTindepeqdent
potent?a], w__, and thus it is appropriate to ca11.them “e1as;1c spra1ns .
A1l stress-hi%tory effects are in the second term in (6), which gives the
"inelastic strains".

In order to obtain a constitutive equation tha? agrees with Sun and Chen's
experimental data we select for 9 the quadratic form,
- 5 8
co-(aij o5 aJ) (8)
where the a:. are constants; as the antisymmetric components of ayj have no
effect on oy s We may suppose a4 = ajj- Now,

= . 9
Z-)colac,i al'j °; /00 (9)
and thus from (6),
_ e 3P 10
£ 76 " oy 245 %5 /% (14)
During structure-change processes S = o, as noted previously, and

therefore the coefficient aP/aoo depends on°on1y LA For such processes
we may thus write

c.=e$+e a..o; /o (11)

where

g = so(co) = —(aP/aoo) evaluated at S = 9, (12)

In the terminology of plasticity theory, (11) is for "loading" processes.

Without fiber fracture, the strain in the fiber direction.is essentially
independent of stress history in most structural composites; thus, as
assumed by Sun and Chen, a,. = a; = 0. We suppose further that the
composite is orthotropic, rega%%]es& of stre;s—h)story, where the axes x;
are the principal material axes; this condition implies the only a;; which
do not vanish are a,j, a53, aa3. 844+855s 3p6s aS well as a32(=a23). There
are really only five independent constants because o, may be norma11zgd
with respect to a constant without limiting the genefﬁ11ty of (5); this
normalization will be done by simply letting agy = 1. If all stresses
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vanish except for o,, (8) reduces to o = |o,|; thus o becomes the
applied stress for tge case of uniaxial P nsi]g loading normal to the
fibers.
For plane stress, 03 = 04 = 0g = 0, so that (8) reduces to
N 2 2\%
9 = (02 + 3¢ % J (13)
From (11),
e
€] = € (14)
e
€y = g, * 5002/00 (15)
e
€g = €g * g 5006/00 (16)
For uniaxial tension normal to the fibers, o_ = o,, as noted previously.

Equation (15) then shows that e  reduces to °the inelastic component of

e,. For general stress states e. is at most a function of o , according
to?(12). g g

By introduging some additional specializations, including the assumption
that the e are linear in the o,, we will finally arrive at Sun and Chen's
findings for uniaxial loading 'of unidirectional, rectangular specimens.
Namely, for loading in the x direction (cf. Fig. 2),

2 ;2 ;
9] = 0876 o,, o, =sin"e o, og = -sine coseo, (17)
where o is the applied force/area. The axial strain e may be expressed

in termS of the strains in (14)-(16) using the sefond-order tensor
transformation rule,

2 .2 .
€y T COS78 e + sin"6 e, - sine cose €g (18)
Substitution of (14)-(17) into (18) yields

e 2
€y = €g * h € UX/UO (19)

where c: is the elastic axial strain, and
i
h = (sin4a + A sinze cosze)z (20)

Observe also from (13) and (17) that

L hcx (21)

We can obtain the function h(e) used by Sun and Chen by multiplying (20) by
v/3/2. Equation (19) is the same as derived by them from a plasticity
model for loading behavior; this model will be discussed in Section 3.

Experimental information on ¢ -0y behavior for two f?bér angles & may be
used with (19) to evallate g and the .functione = ¢ (co) s
(Alternatively, one may use data from several fiber angles to d8termTne the

dgg which minimizes the data spread in the e (00) plot.) Results from
tests at other fiber angles then serve to check (f@). A simple power law

ey = A oon (22)

where A and n are positive constants, was reported by Sun and Chen to fit
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the data out to specimen failure (e =.1%); for a boron/alum1nuT gogpo?}ﬁg
n=5.8 and agg = 4, whereas for gr&bhjte/epoxy n = 3.7 and agg J;ed. ﬁere.)
constant agg used by Sun and Chen is one—h§1f of the] aq? o ery and
Values of a = 4 and n = 2.4 have been 9bta1ned recent y] y1 gnates nd
Schapery (16%%) from studies of unidirectional apd angle-ply Jmn it
the same rubber-toughened graphite/epoxy material used tp %;$1ef e
curves in Fig. 1. Although the latter exponent (n = 2.4) is gg‘ - P
that reported by Sun and E?%% fg; an 1:n;$;gh:{:225 i@la;tf Lol
i oxy material (n = 3.7), e angle- - . v

%;?S:;:;/egndy Schapery, %988) exhibjt a 1aﬁger degree of non];ge:g1§%
because the total axial strain range is approximately 5%, as compar

in the former study.

In the much earlier work of Lou and Schapery (1971) it was foung tt;} ;:g
parameter o_ in (13) accounted for phe effegt of stress ita_ek e
functions uskd to characterize n9n11near viscoelastic be av1oter .
glass/epoxy composite. The motivation for the use of this parame ame
in part from the observation thag the ocﬁahegral shear §tre?§ s{°&§ can
normally be used to correlate multiaxial y1g1d1ng of'plast1cs Juuniform]y
metals). As a simplification, the matrix was viewed a: a bl
stressed layer of material sandwiched between 1ayers_ of r'(}gt deFire
material; i.e., the lines in Fig. 2 at the ﬁngle 6 were 1mag1n%_ o2 e
layers rather than fibers. Using the principal material axes, Fig. ¢,
shear stress is

- =2, = =2 - -2 -2, -2, -2\\% 23
toer = 31(51- 5)%+ (5, -59)° + (3 - 81)° + 6(5,+ 55 + )] (23)
where the 51 in this equation are the stresses in a matrix layer.

ix i o o s the stresses

a matrix 1in plane stress o, and o, are the same a :
Fgr and o, acting on a composite %onsisthg of parallel layers ofdgggzéé
ang reinforcement material. A factor v, was a1§? :?trodgggg;ossz ek
relationship o, = v o, . For a Tinear elastic, Y iy

bi ﬁif the PoissonPs Latié{ and for an incomprgss1b]e e]astxc or rigid

p]ﬁstic matrix v_ = 0.5. Use of these idealizations in (23) yields
e

L 2.4

toer = (2730)% (0,74 cog)® (24a)
where

c = 3/(1- vy + v0) (24b)

ini lement analysis of a
orted by Lou and Schapery (1971) a finite e ]

??n;:?)elasticycomposite with a square array of.f1bers was made to z;ﬁ?;g%
the average octahedral shear stress in the matrix. Apgrt from anu rica
factor, (24) was found to be a fairly good approximation to this gxe) gné
Considering c to be the arbitrary constant 366, it is seen that (' a e
(13) are equivalent parameters for characterizing nonlinear behi:10f: 388
is also of interest to find from (24b) that c = 4 when v, = % an € {] .b
when v_ = 0.35; the former value is the same as found experimentally ng
Sun and€ Chen (1987) for the boron/aluminum composite and by M1gnfry 2he
Schapery (1988) for the rubber-toughened graphite/epoxy composi e; o
latter value of c was reported by Lou and Schapery (1971) for glass/epoxy
material.

i i tional loading,
f the experimental work reported above is for propor !
??3;.0 Howetgr, that of Mignery and Schapery (1988) 1n¥o;¥::
nonproportional loading of the plies in an angle-ply layup. The:f Smgking
provide limited experimental support for (11). We are currently
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additional studies of angle-ply and unidirectional laminates under loading,
unloading and reloading to address the applicability of (10) and (42) for
toughened and untoughened graphite/epoxy composites.

It should be observed that the difference between loading and unloading
curves in the model (6) 1is characterized by one scalar factor

aP/30_, where P = P(g_, S). The loading curves, do_/dt>0 ,are predicted by
using = o_. For unfbading, do_/dt<0 , the thermgdynamic requirement of
positive entropy production ard the path-independence of the unloading work
are violated unless S is constant Schapery (1988). Consequently, for
arbitrary stress histories, S is always the largest value of oy UP to the
current time.

This representation does not account for the difference between unloading
and reloading curves. Tonda and Schapery (1987) were able to account for
this difference for an untoughened graphite/epoxy composites using linear
viscoelasticity theory; the approach to combining the effects of
viscoelasticity and structure changes was developed earlier (Schapery,
1981). Whether or not this approach is able to account for all of the
hysteresis 1is not presently known. It may be necessary to introduce
another S-parameter which is activated at the start of reloading.

3. THE NORMALITY RULE FOR INELASTIC STRAINS

Let us now compare the normality rule employed in plasticity theory to
predict plastic strain increments with the type of normality contained in
(4). Following Sun and Chen (1987), we take o~ = k as the yield condition,
where k is a scalar that varies with the dhount of plastic straining.
Plastic strains are introduced in the same way as is commonly done for
metals,

p _ _ 4.8
de]- = dei ds,i (25)
where de%, de., and de? are infinitesmal changes in plastic, total, and
elastic slrain}, respeétive1y< The elastic strains are assumed to be
linear in the stresses,

e _
e = S'ijcj (26)
where Si‘ are the constant compliances. The associated flow rule for
plastic §{rain incremen}s is
P aoo

dei = 3;;— dax (27)
where dx is a scalar. This eguation shows that deP is a vector which is
normal to the surface o, = corstant. From (8) and (27),

P _
dei = Zaij"j
For proportional stressing o, = k.o_ (where the kj are constants) (28) may

be integrated to obtainzthe tota11pfhstic strains,
30

dx (28)

A .
€] %0, (J‘oodk}/oo (29)
which is also a vector normal to the surface oy = constant. The total
strain is
€; = e? + s? (30)
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which may be compared to the strain (6).derived from a dual strain energy
density. The "inelastic strain" vector in (6),
30

I aP 0 (31)
€y = =T o
17 aoo aui 5
= j . 29). However, in
ormal to t surface o_ = constanf, just as e; 1n ( )
;gn{Last to D?, the norma?ity of e? exists for proportional and non-

i i i lity is preserved
tional st}ess1ng. Observe also that this norma
zﬂg?ﬂg unloading and reloading; recall that the coqff1c1ent aP/§1§ depends
on both o_and S, and that S = o_ only when o 1S equal to its largest
value (conSQdering all values up to %he current tQme).

Consider next for further comparison a type of normality discussed by Rice
(1971) for incremental inelastic strains. He developed (4) from
thermodynamics with internal variables and useg it in a s@udy of inelastic
behavior of metals; S is one of possibly many internal {ar1ab1es. A change
in strain due to 1nfini§esima1 changes in both o, and S is, from (4),

3w
die, & == di, ®=00-ds (32)
1 30;30. J 30,
i ] i
where
G = -awO/aS ) (33)

i i i i i defined through
Rice observed that when elastic and 1ng1ast1c strains are d
jncrements, as expressed by the first and second terms in (32),
respectively, the incremental inelastic strain,

del = 2L g5 (34)
1 o tant. In fracture mechanics G (33)
i 1 to the"yield" surface G = constant. In fr
;: ququ tﬁe "eﬁirgy release rate". When there are two or more structure
parameters Sm (m = 1,62, —
3
del = n=lgs (35)
1 230,-l m
where
z (36)
Gm = —awo/asm

Thus, the mth component of dzg is normal to the respective surface, Sm =
constant, as noted by Rice.

i i Rice's incremental elastic and
When we use the special form for woin (5), Ri

inelastic strains become 2 32w )
W p
e o - o0 lo. - —3——d . 37
dei =" Baiacj 93 aoiaoj %3 Boiacj OJ (37)
I 36 2%p 2%p A, (38)
2 oo o 245 = - —dS —
dey = 30, s 3530, 3 TN 30y

i Iy face o_ = constant and that an
Notice that de; is normal to the' surfa )
increment in the elastic strain defined in (7) Ps equal to qn1y the f1rst
term in (37). Observe also that the tangent elastic compliance
matrix -aw /30.30. used in defining the incremental elastic strains 1n
(32) is a %unction of the structure parametgr S as well as stresses, wh1;e
that based on the elastic strain in (7), -3 wao/a°ia°j’ depends only on the

stresses.
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4. A CONSTITUTIVE EQUATION WITH LINEAR UNLOADING BEHAVIOR

I -

1‘: gf;;;‘gﬁ%;r1azslsrLgmeghethiftfetchte o’:atdan!a%e on 1composite material behavior, it
- - : erial is linearly elastic wh i

constant. This linearity assumption is equivalent to usingwanug?mz%ia;:

energy density in which : C g
order ters, stress dependence is limited to first and second

- 1
W =-b -b.o. -
S o Pi% - 2 byjo405 (39)
where b, b; and b

;5 may be f i
Sm' Ir this case thé y unctions of one or more structure parameters

strains (4) are

€1 = By * byyey (40)

The residual strains b i
; and c - i i
;hrough changes in Sm;lon1y ogngjiyfff §33u2§g ;:;g W1%2 st;ess gl
roten | . e strain ene

y is related to W through (3),and may be written as nersy

W =2cC & &
ot Cigi 2 G55 €j (41)

which provides the stresses
0 =i+ Cy5ey (42)

Ig;par;eilnatio:ghip between the b's and c's may of course be obtained b
il gté 3ré3?it(4i%} l?e:: SﬁfonQ—onger energies may be sufficientli
| ress-strain behavior if th i
reloading curves can be a i right Hoe S

0ad pproximated by the same straigh i
position (c;) and slope (Cij) vary with S (as shown in Fig. g)? Ve Whgse

The work (Jo.de.) and i
Jo.de;) dual work (- fc.doi) during  structure-change

processes are 'ind . )
1988), ependent of path or histoby 'if and only if (Schapery,
BWO 5
= 2 - LW
a8 ~9 Mg =9 (43)
o

0

o] |

Fig. 3. Stress-strain behavior accordi
: cording to (42), ;
loading, unliading and re1oading. (42), showing
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where g is at most a function of S; the quantity g is the specific fracture
energy if S is the fracture surface area of a crack. (Equation (43) is not
limited to the second-order energies (39) and (41).) As shown by Schapery
(1988) S can always be chosen so that (43) reduces to

awo aw
-—a's——=1 0T-—3—5‘= (44)
Observe that the term c, (= - bo) can be omitted as it can be absorbed in

g in (43).

It should be added that the derivatives aw /aS and aw/3S are always equal
which may be easily shown by taking the differential of (3). Equation (44)
provides the relationship for predicting S as a function of stress or
strain. Thermodynamic theory requires dS/dt = 0 (Schapery, 1988); thus,if
(44) predicts dS/dt < 0, S is actually constant and (44) is to be
disregarded.

For the second order energy (39) with by = 0, the equation for S is
i 1 _"ij -
s ot oz a0y ! (45)
Although (39) 1is only of second order in the stresses, it is still
sufficiently general to mathematically represent Sun and Chen's data

discussed in Section 2. Indeed, this may be done by assuming the by are
constants and then using

_ r
byj=Si;+8 S"ay; (46a)
where
n-1 1-r r
= —n?, B=A (2/!‘) (46b)
Also, S;; are the constant elastic compliances, and aji, A, and n are the
constantg appearing in (8) and (22); observe that O < 1. Equations

(45) and (46) yield
s = (ar/2)(m1/Z; (1) (47)

During loading, do_/dt > 0, (47) is used in (46a) to predict instantaneous
values of bj;. or unloading, do./dt < 0, the coefficients b;; are
constant beca@se S has a constant vafue equal to that at the start of
unloading. Upon reloading, S again changes in accordance with (47) when
o_ reaches its largest past value. Unloading and reloading data are not
reBorted by Sun and Chen (1987), and thus the range of applicability of
this particular model cannot be assessed at this time. It is important to
notice that this phenomenological characterization is not necessarily
limited to brittle or to ductile composites, as Sun and Chen's results are
for both types.

Finally, we should mention that the theory based on path-independence of
work has been successfully employed in limited studies of particle-
reinforced rubber (Schapery, 1987b), and a thermoplastic composite (Dan
Jumbo et al., 1987). In the former case nearly all nonlinear behavior was
expressed in terms of S-dependence of bji; in the latter case the residual
strains bj, instead of b;s;, were used tJ account for most nonlinearities.
The small amount of nonlingarity that was not adequately represented by the
second-order energy functions was apparently due to the large strains

(= 60%) in the filled rubber specimens and fiber or microfibril alignment
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(causing an increase in modulus for loading in the fiber direction) in the
thermoplastic composite.

5. CONCLUDING REMARKS

A possible approach to predicting multidirectional-fiber laminate behavior
would consist of using a unidirectional ply energy density, such as given
by (5) or (41), with the usual displacement assumptions of lamination
theory (Christensen, 1979). Delaminations and their growth could be
accounted for essentially in the same way as done for linear and nonlinear
elastic laminates, but with aditional bookkeeping when there 1is any
appreciable difference between 1loading and unloading stress-strain
behavior. The work of deformation (which is equal to wy = w + S if the
second equation in (44) is used to predict S) is treated just like strain
energy in nonlinear elastic fracture mechanics (Schapery,1987a); in
particular, wy is wused in striin energy release rate and J integral
calculations.

With brittle-matrix composites, a significant number of transverse ply-
level cracks may develop prior to structural failure (Johnston, 1987).
These cracks are somewhat planar with the plane parallel to the fibers and
perpendicular to the lamination plane. Typically, after rapid growth, they
are arrested at the ply boundaries. If more than one fiber orientation is
used, a laminate usually is capable of supporting loads well above that at
crack initiation. Whether or nct one S-parameter is sufficient to account
for a general type of inelasticity which includes transverse cracks
requires further study. It should be observed that even with only one
parameter, an appreciable effect of these cracks on the laminate behavior
may be taken into account through the way w or w_ depends on S; for
example, b;; may have the form i» (46a) at small S, and then a considerably
different %%rm at large S when transverse cracks develop. Physically, S
may reflect micro-damage (e.g. rubber particle cavitation) and plastic
deformation until transverse cricks develop, and then at larger S-values
account for these mechanisms as well as transverse crack density. If the
effects of crack density and its growth are not sensitive to properties of
adjacent plies with different fiber angles, an experimental program could
use the simple angle-ply layup. Similar observations can be made for
distributed interior delaminatiors (Harris et al., 1987); however, at least
two plies would comprise the basic element of a laminate.

We are presently using these ideas to characterize and predict the
mechanical response of untoughen:d and toughened graphite/epoxy laminates,
recognizing that the proposed method has to be considered as tentative
until a significant amount of additional experimental and analytical
studies are made. Such studies should help to establish the range of
validity of the work-potential nethod as well as define the experimental
program needed for a complete chiracterization. Micromechanical models of
damage 1in linear elastic composites (Wang and Haritos, 1987) should be
helpful in analytically modeling the effect of distributions of cracks on
moduli or compliances, and thus reduce the experimental effort. Schapery
(1987b) used this approach in an elementary model to relate-the orthotropic
elastic properties of a particulate composite to a statistical distribution
function which characterized the damage, and employed an evolution equation
like (44) to predict the change in properties through an S-parameter which
is an overall measure of the damage. A similar procedure should be
applicable to laminates.
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