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ABSTRACT

At the time of the previous International Conference on Frac-—
ture, the C* integral had long been recognized as a promising
load parameter for correlating crack growth rates in creep-—
ductile materials. The measured crack growth rates as a function
of C* and of the temperature could be understood on the basis of
micromechanical models. The distinction between c*x-controlled
and K_.-controlled creep crack growth had been clarified and
first attempts had been made to describe creep crack growth in
the transient regime between elastic behavior and steady-state
creep.

This paper describes the progress in describing transient crack
growth including the effect of primary creep. The effect of
crack-tip geometry changes by blunting and by crack growth on
the crack-tip fields and on the validity of C* is analyzed by
idealizing the growing-crack geometry by a sharp notch and using
recent solutions for the notch-tip fields. A few new three-
dimensional calculations of C* are cited and important theoreti-
cal points are emphasized regarding the three-dimensional fields
at crack tips. Finally, creep crack growth is described by
continuum-damage models for which similarity solutions can be
obtained. Crack growth under small-scale creep conditions turns
out to be difficult to understand. Slightly different models
yield very different crack growth rates.
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INTRODUCTION

Creep crack growth is the slow extension of a macroscopic crack,
which usually, but not necessarily, occurs along grain
boundaries by the formation of creep cavities ahead of the crack
tip. Local corrosion in the crack-tip zone often plays an
additional role.

Creep crack growth may or may not be rate controlling for the
lifetime of a component operating at high temperatures. At
present it appears that in the majority of technologically
important cases, creep crack growth plays no predominant role.
For example, if seamless pipe bends in fossil-fired electric
power—-generating plants fail, they do so by a more or less
homogeneous cavitation of grain boundaries over large portions
of the pipe. According to the long-term experience with these
pipes in Europe, small defects do not reduce the 1lifetime con-
siderably, since crack growth from small defects takes 1longer
than does failure by cavitation. Incidentally, it should be
noted that grain boundary cavitation eventually leads to cracks,
but this is not a typical example of what we wunderstand to be
creep crack growth. First the growth of these <cracks occupies
only a small fraction of the 1lifetime, so that it 1is often
practically irrelevant, and second these <cracks grow through
material that is already heavily damaged, whereas the usual
methods of dealing with creep crack growth rely on a small-scale
damage assumption.

However, the experience with pipes in power plants should not
lead to the conclusion that creep crack growth may generally be
ignored as a potential failure mode in all cases. For example,
the failure of pipes with a 1longitudinal seam weld has been
treated as a problem of creep crack growth (Viswanathan, Dooley
and Saxena, 1988). In general, the danger of premature failure
by crack growth is greater in creep brittle materials, for large
and inhomogeneously stressed components (like at notches), for
large pre-existing defects, or if cracks are nucleated by some
other mechanism such as fatigue, corrosion or thermal shock.

Since the late 1960's, creep crack growth rates have been
measured, primarily in ferritic steels for applications in steam
turbine components and other power plant equipment (e.g. Siverns
and Price, 1970; Harrison and Sandor, 1971; Nikbin, Webster and
Turner, 1976; Taira, Ohtani and Kitamura, 1979; Ohji, Ogura,
Kubo and Katada, 1980; Gooch, 1982; Riedel and Wagner, 1984;
Koterazawa, 1986; Riedel and Detampel, 1987), in austenitic
steels for piping and pressure vessel applications (Koterazawa
and Mori, 1977; Ohji et al., 1978, 1980; Taira et al., 1979;
Saxena, 1980; Sadananda and Shahinian, 1980a, 1980b, 1983; Maas
and Pineau, 1985; Jaske, 1988; Hollstein and Kienzler, 1988),
and in nickel-base alloys primarily for gas turbines (Landes and
Begley, 1976; Sadananda and Shahinian, 1980a, 1983; Floreen,
1983; Kienzler and Hollstein, 1987). Fewer papers have appeared
on cobalt alloys (Sadananda and Shahinian, 1983) on aluminum
alloys (Nikbin, Webster and Turner, 1976; Radhakrishnan and
McEvily, 1980; Webster, Smith and Nikbin, 1986), and on ceramic
materials (Evans and Blumenthal, 1982). A comparison of many
different materials was given by Speidel (1981). More references
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can be found in the recent literature and in ‘previous reviews
(Riedel, 1985a, 1987). The results are stored in data banks.

In the following sections, theoretical results will pe presented
without giving any derivations. The underlying equations are the
continuum-mechanical equations for the equilibrium of the st;ess
field, for the compatibility of the strain field and various
material laws specified in the respective sectiong. The tools to
derive the results are almost exclusively very simple ones: the
scaling properties of power-law materials are _explolted;
dimensional considerations are used to analyse 11m1thg cases,
between which one can interpolate; the exact or approximate path

independence of the J integral or related quantities is
utilized; few finite-element results are employed Fo check
analytical approximations numerically. For more details, the

reader is referred to the original literature which is quoted.

STATE OF THE ART UP TO THE TIME OF ICF6

*
Nonlinear Viscous Material and the C Integral

In the middle 1970's it was recognized that the viscous analogue

of the J integral (Rice, 1968), which was subsequently called
cx, J', J* or 5, should be an appropriate load parameter to
correlate creep crack growth rates in different types of
specimens and components (ohji et al., 1974; Landes_and Begley,
1976; Nikbin et al., 1976). The prerequisite for this to.be true
is that the material is purely viscous, i.e. the strain rate
must be an unequivocal, but arbitrary, function of stress. A
specific form is Norton's power law

£ = A o" (1)

which is convenient for analytical purposes. But ‘tﬁis specific
stress-strain rate relation is not a prerequisite for the
validity of C*.

Since viscous deformation corresponds to secondary, or steady-
state creep, which often determines the creep behavior of _rgal
materials to within a good approximation, it is not surprising
that C* was found to be rather successful in correlati?g crack
growth rates measured in specimens of different sizes and

shapes.

An important tool for the application of C* has beeg the Plagtic
Fracture Handbook (Kumar, German and shih, 1981) which provides
tables for the calculation of the J integral for Power—law
hardening materials based on finite elem?nt _solutlons for
various specimen geometries. Due to the elastic-viscous a?alogy
these results can directly be used for C* in power-law viscous
materials as well. The general form of C* must be

n+1l

c'«aac (2)

where a is crack length, ¢ is a measure of the applied stress in
the cracked specimen (e.g. net section stress or reference

AFR-2—U
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stress), and the factor of proportionality which is not given in
eg. (2), depends on the choice of that stress measure, and is
tabulated by Kumar et al. (1981). A convenient way of
determining C* is to ingroduce the deflection rate at the
loading points, A x a A O with the factor of proportionality
being given by Kumar et al. Together with eq. (2) this gives

*

¢ = g, %ae A . (3)

The dimensionless factor g, depends on the specimen geometry and
on n. The advantage of eq. (3) over (2) is that it is relatively
insensitive to the value of n and to plane strain or plane
stress. Both, n and the state of stress are often not exactly
known in creep crack growth experiments.

Since C* is a path-independent integral in viscous materials, it
can not only be measured at the loading points of the specimen,
but it also determines the stress and strain rate fields at the
crack tip. For the special case of power—-law viscous materials
the crack-tip field is an HRR field (Hutchinson, 1968; Rice and
Rosengren, 1968):

o.. = .(0). (4)

[ c* ]1/(n+1)8,
ij

I_Ar
n

The dimensionless quantities In and 8;j(9) have been tabulated

by Shih (1983), and r and €@ are polar coordinates centered at
the crack tip.

Despite the success of C* in several investigations, limitations
to C* must be expected to become effective once the material
deviates significantly from a nonlinear viscous bahavior, or if
significant crack-tip blunting occurs. The term "significant"”
will be specified under various aspects later.

Crack Growth Rates in Power-Law Viscous Material

In the early 1980's models for creep crack growth were developed
based on grain boundary cavitation ahead of the crack tip
(Riedel, 1981la; Bassani, 1981). Good agreement with measured
crack growth rates was obtained if cavity nucleation and growth
were assumed to be strain controlled. Then, instead of con-
sidering cavities ahead of the <crack, one can equivalently
require that the crack grows subject to a critical-strain
criterion. A similar model had been described earlier by Kubo et
al. (1979). Such a model predicts that the crack starts growing
after an incubation time

]

i . (5)

InAxC n/ (n+l) £
C

o, n
A(oe(o))
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where ¢ _is the critical strain pertinent to the triaxial stress
field af the crack tip and x_ is a structural 1length ahead of
the crack tip at which the cfitical strain is to be attained;
o (0) is the value of the angular function appearing in eq. (4)
for the equivalent tensile stress at 6=0.

After crack growth initiation the evolution of the growth rate
is described by an integral equation resulting from the
integration of the strain rate over the prior history at a
generic point ahead of the crack. The crack growth rate must
have the general form

~ n 1/ (n+1)
a = ii%;i;%T fffsl_______ c*n/ 0¥l g aa/x ) (6)
St £ c

where Aa is the amount of crack growth since the beginning of
the test, and the dimensionless function f(Aa/x_) results from
the solution of the integral equation. In genera this solution
can be obtained numerically. Useful two-term expansions for
small and large Aa/xc are, respectively,

_ nt+l Aa
f(Aa/xc) = === (1 + =) (7a)
c
_ n Aa, 1/ (n+1)
f(Aa/xc) = sin(mn/(n+1)) [(x ) 7nl ) {75)

[ed

The dimensionless quantity 7 _ can be expressed in terms of Gamma
functions (see, for example, Riedel, 1987) and has numerical
values between 0.85 and 1 for n = 4 to ®.

In numerous experiments, the predicted proportionality of & on
the n/(n+1)'th power of C* has been confirmed. The temperature
enters into eq. (6) primarily through the creep coefficient A,

which is, however, raised to the small power 1/(n+1), so that
the predicted temperature dependence of the a-Cc* relation is
weak. This is indeed confirmed by experiments (e.g.. Riedel and

Wagner, 1984). (Of course, the growth rate is strongly tempera-
ture-dependent if tests at a fixed load, rather than at a fixed
Ccx, are compared.) Finally, eds. (6) and (7) predict that,
beyond the dependence on C*, the growth rate should increase as
a function of Aa, the rate of increase becoming Vvery small at
large Aa according to eq. (7b) . Such an additional dependence of
a has been observed qualitatively in almost all creep crack
growth tests. Semi-quantitative comparisons with experiments by
Maas and Pineau (1984) and by Riedel and Wagner (1984) gave a
fair agreement. It should be noted, however, that transients to
be described later are superimposed on the crack growth behavior
described so far, so that the initial increase of a as a
function of Aa may be masked.

In the derivation of egs. (5) to {7) it was assumed that the
cavities do not disturb the HRR field, which prevails at crack
tips in power-—law viscous materials. In the damage-mechanics
AFR-2—U*
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approach to be described 1later, this assumption 1is dropped.
Nevertheless, the results for the crack growth rate are
virtually the same.

Elastic/Nonlinear Viscous Material. KI vs. c"
As a prototype problem of bounding the range of validity of C*
against that of an other load parameter, Riedel and Rice (1980)
and Ohji, Ogura and Kubo (1980) considered an elastic/power-law
viscous material described in uniaxial tension by £ = JO/E + A0,
where E is Young's modulus. For short times, large creep strains
in such a material are confined to a small creep zone, which
grows around the crack tip according to

2 2/ (n-1) (8)

rcrx KI (EAt) -
In this short-time, or small-scale-creep limit, the specimen
behaves predominantly elastic and KI is the 1load parameter to
describe the evolution of the fields near the crack tip. After

long times, creep strain dominates compared to elastic strain on
the whole ligament of the specimen. The specimen behaves as if
it were purely nonlinear viscous and hence C* is applicable. The
characteristic time that separates the regimes of KI and C* is

2 . 2
. . KI (1-v°)/E (9)
1 (n+1) c*

At the time of the Sixth International Conference on Fracture
the practical value of t for choosing the appropriate 1load
parameter under given testing conditions had been demonstrated
repeatedly (e.g. Ohji, Ogura, Kubo and Katada, 1980; Riedel and
Wagner, 1984).

It had also been recognized that the transient from the initial
elastic to the steady-state creep response plays a role in many
experiments. To describe crack growth rates in the transient
regime, Saxena and Landes (1984) and Saxena (1986) introduced the
C, parameter. This parameter is measured wusing essentially the

same formula as that for C*, eq. (3). However, eq. (3) is
meaningless for C* outside the steady-state creep regime, whereas
it gives C, during the transient as well. (There has been some
confusion in the literature, since several workers denote the
result of eq. (3) by C* irrespective of whether or not steady-
state creep prevails. Others, including the present author,

suggest the use of C* only under steady-state creep conditions,
i.e. in effectively nonlinear viscous materials).

In the following sections, the further developments after ICF6 in

the area of transient creep crack growth, as well as in other
areas, are reviewed.
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FURTHER DEVELOPMENTS ON TRANSIENT CREEP CRACK GROWTH

The Amplitude of the HRR Field, C(t)

If the crack tip is surrounded by a creep zone in which power-
law, secondary creep dominates, the asymptotic field near the
crack tip is an HRR field of the form

sy 504 TAEil, .
13

%5 TAr o..(0). (10)

For steady-state creep of the whole specimen, C(t) approaches
its steady-state value, C*. It remains to calculate C(t) during
the transient as a function of the time and of the load, which
will be done shortly.

As Riedel (1987) has shown, the micromechanical models of creep
crack growth based on grain boundary cavitation can readily be
generalized to time-dependent c(t), as opposed to a constant
C*. The crack growth rate is then given by egs.(6) and (7) with

C* replaced by C(t), i.e. a « C(t)n/(n+1). Hence, at least in
the framework of these models, crack growth rates should
correlate with C(t) during the transient in the same way as
they correlate with C* in the steady state.

Since C(t) is not a path-independent integral, except in the
limiting case when it is equal to C* , it cannot be directly
measured at the loading points of the specimen. Therefore, a
theoretical analysis is needed to determine clit) .

Calculation of C(t) for Elastic/Nonlinear Viscous Materials

For elastic/nonlinear viscous materials Ehlers and Riedel (1981)
have shown by finite element calculations that the formula

c(t) = (ti/ t + 1) C* (11)
approximates the numerical results closely at all times. For
short times, eq. (11) reproduces the analytical results of
Riedel and Rice (1980), whereas for long times it correctly
approaches C*. This result was confirmed repeatedly, most

recently by a detailed finite-element study of Li, Needleman and
shih (1988).

If the initial material response is elastic—-plastic, rather than
only elastic, it was suggested that C(t) retains the form of eq.

(11), but in eq. (9), Ki(l—vz)/E should be replaced by the J
integral to calculate tl'
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Comparison of C(t) and C__for Elastic/Nonlinear Viscous Material

Various authors noticed that the short-time behavior of C is
not equal but similar to that of C(t) (Riedel, 1987; Kuhnle and
Riedel, 1987; Leung et al, 1988a,b). By an argument analogous to
the plastic-zone correction argument in elastic-plastic fracture
mechanics one concludes that in small-scale creep the 1load-line
deflection rate, and hence C_ & A, must be proportional to the
growth rate of the creep zone, which, according to eq. (8), 1is
fcra £ (n-3)/(n 1). The interpolation formula

(12)

c, = [ct(ti/t)(n_”/(n_l)*' 1] c*

approximates the finite element results of Ehlers (1981) well
for all times with a = 0.77 for three-point bend and double-
edge-cracked tension specimens and a = 1.23 for CT-specimens,
all with a/w = 0.5 and n=5. Comparison of egs. (11) and (12)
shows that C_ indeed approximates C(t) if n is large and if a is
of the order unity. Although this condition for a is fulfilled
for the test specimen configurations mentioned above, it cannot
be generalized without care. In a specimen with a small crack,
for example, @ must become very small if the displacement rate
is measured far from the crack, but it may have a value near
unity if the displacement rate is measured near the crack.

Primary-Creep Effects on C(t)

Recent experiments, to be described later, indicate that the
elastic transients discussed so far are insufficient to explain
the observed transient behavior. Hence primary creep is taken
into account to improve the theoretical description.

A constitutive equation, which exhibits the necessary features
to describe the experiments but is simple enough to allow for
approximate closed-form solutions is (for uniaxial tension)

¢ = G/E + Aool/N_lé + A10m(1+p)5—p + ao"

(13)
where the four terms represent elastic, instantaneous plastic,
primary-creep and secondary-creep deformation, respectively. In
particular, N is the hardening exponent for instantaneous
plasticity, and p is the strain hardening exponent in primary
creep. A typical value is p=2, in 1y§ich case eq. (13) gives
Andrade's primary creep law, & < t , upon integration for con-
stant stress.

Depending on the values of the material parameters and of the
load, the fields in a cracked specimen can develop in different
ways. The primary-creep zone, which grows in the initial elas-
tic-plastic fields may either be overtaken by the secondary-
creep zone while both are still small, so that primary creep
never plays a great role for the overall behavior of the
specimen; or the primary-creep zone may spread though the whole
specimen while the secondary-creep zone is still small. The
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characteristic time for the transition from the initial elasFic-
plastic state to extensive primary creep of the whole specimen
is
e I (14)
© m+l [ o ] s
h

The time for the transition from primary to secondary creep is

c; (p+1) /p
ty, = |——. ] (15)
(p+1)C

Here C‘ is the analogue of C' for a specimen deforming in
primary creep only (Riedel, 1981Db).

The HRR-field amplitude during the transient can be described by
the approximate interpolation formula

c(t) =[ £/t + (tz/t)p/(p+1) +1 ]c‘ (16)

with t1 from eq. (9), rather than from eq. (14). Equation §16)
has the correct behavior in the small-scale creep 1imit, 4d.e.
when t << tl(tl/tz)p, for predominantly primary creep of the

whole specimen, i.e., when t1<< t << t2, and for extensive

secondary creep, i.e. when t >> t2

Comparison of c(t) and C,_for Primary Creep

If primary creep dominates in the whole specimen except possibly
in a small secondary-creep zone, the load line deflection rate
is given by

A1/(p+1) o™

i 17
i = m 1 p/(piif h,(a/W,m) 17}
((p+1)t)
The dimensionless function h and the reference stress O are
given by Kumar et al. (1981). For the CT specimen, for example,

o o /(1.455n), where O is load divided by uncracked
lgsgmentnarea, n is a given flificétion of a/Ww, and the numerical
factor is valid for plane strain; for plane stress the factor is
1.071.

calculating C, from eq. (3) with eq. (17) inserted shows that
C. is exactly egqual to c(t) under primary-creep conditions, i.e.
wﬁen the middle term in brackets in eq. (16) dominates. This
result has been mentioned by Kuhnle and Riedel (1987) and has
been confirmed numerically by Leung, McDowell and Saxena

(1988b) .

1503



Hence, C, and C(t) are nearly equal in the whole time range
except fSr the reservations made in the paragraph following eq.

(12). This means that C is a reasonable measure for the
crack-tip fields and, at the same time, it «can be measured
conveniently.

Comparison with Experiments Involving Primary Creep

Primary-creep effects can be observed in the load-line
deflection rate and in the crack growth rate. Riedel and
Detampel (1987) find for two ferritic steels tP;; the
displacement during the transient increases as A-A @ t which
is exactly compatible with the primary-creep behavior of the
materials. During the elastic transient one would expect
A-A < t2/(n—l) (= to'15 for the stress exponent of one of the

ste%ls, n=14). Similarly, Leung, McDowell and Saxena (1988b) can
explain the deflection rates neasured on another ferritic steel
only if they take primary creep into account in their finite
element analysis.

Riedel (1987) and Riedel and Detampel (1987) compare experimen-
tal crack growth histories with calculated ones. An example for
1/2Cr-1/2Mo-1/4V steel is reproduced next.

As mentioned earlier, the crack growth rate is related to C(t),

eq. (16), as & « C(t)n/(n+1). The crack length as a function of
time is obtained by numerical integration of the crack growth
law (numerical since C* is given numerically as a function of
the crack length). The result, which is shown in Fig.l, was ob-
tained with the following material parameters.

- 5+10 °! (Mpa) /s

A m= 7.3 p = 2
! -39 -n
A = 1.7*10 (MPa) /s n = 14.1
A = 9x10” *® (Mpa) " N = 0.2
E = 172 GPa v = 0.3 €C= 1.2%.

The value of the critical strain, ¢_, was chosen such that the
calculated lifetime coincides with fhe observed one (1,456 hours
in this case).

From these material parameters, from the load P = 4.51kN and the
CT-specimen geometry, the load parameters can be determined
using the Plastic Fracture Handbook of Kumar et al. (1981):

J = 5 kJ/m’ ¢t = 3.9x107% w/m® c; = 100 3/ (m?st’3).

These values were calculated assuming plane strain and con-
sidering the net specimen thickness between the side grooves as
the relevant thickness, since a comparison with the three-
dimensional finite element analysis of deLorenzi and Shih
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1/2Cr-[1/2M0—1/‘I.V (used| muterial‘)
CT1/2, 20% side grooves
P=4.51 kN, 540°C

> +

a(t) in mm

0 300 600 900 1200 1500

Fig. 1. The evolution of the crack length (after Riedel
and Detampel, 1987).
Solid line: Calculated with t, = 24h, t, = 230h

Dotted line: tl = 24h, t2 = 0. Dashed liIne: t1 = tz = 0.

(1983), showed that this choice gives the best two-dimensional
estimate for side-grooved specimens.

From the load parameters one calculates the characteristic times
to be t. = 24 h (from eq. (9) for the transition from elastic-
plastic to secondary creep) ., tl = 4h (from eq. (14) for the
transition from elastic-plastiC to primary creep), t = 230h
(from eg. (15) for the transition from primary to “secondary
creep) .

As Fig. 1 shows, the initial behavior of the crack growth rate
is described accurately by the theoretical prediction if primary
creep is taken into account (the solid line in Fig. 1). To illu-
strate the importance of primary creep, the dotted line was cal-
culated neglecting primary creep by setting t2 = 0 in eq. (16).

(The 1lifetime was fitted by choosing Ec = 0.7%). Finally, the
elastic-plastic transient was neglected also by setting t1 = 0
and t2 = 0, which leads to the dashed curve (with £, ™ 0.6%) .

Obviously, primary creep is necessary to explain the initial
transient behavior.

CRACK-TIP GEOMETRY CHANGES BY BLUNTING AND BY CRACK GROWTH

In this section the profile of a crack 1is calculated which

blunts and grows in a power-law viscous material. The
calculation starts from the stress field of a sharp crack, i.e.
1505



the HRR field, eq. (4). Crack-tip geometry changes are thus
initially neglected, but the consequences of this approximation
are discussed at the end. It should further be noted that in a
viscous material the stress field is independent of whether the
crack is stationary or whether it grows. Only the current crack
length enters into the calculation of the stress field.

The incentive to analyse the blunting of a crack tip is to
explore the range of validity of C* as a correlating parameter.
In analogy to J in rate-independent fracture mechanics
(Hutchinson and Paris, 1979), C* can only be a valid parameter
if the crack-tip field (the HRR field in power-law materials)
has a finite range of approximate validity between its outer
limitation, which is a certain geometry-dependent fraction of
the crack length, and the disturbance by blunting.

calculation of the Crack Profile

Within the_appgoximation that geometry changes are neglected the
crack profile is calculated by integrating the HRR displacement
rate field

. 1/ (n+1 ~
a, = ant/® ety N e (18)

a) b) Au/2
B
X
—/ t>t
c) d) Au/2
I3
Aa

Fig. 2. Crack profiles:
a and b) Calculated §or n=7, € = 3%.
c) Experimental in 2 /4Cr-1Mo stSel at 540°C.
d) Idealized sharp notch geometry.
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The dimensionless angular function 4. (6) was tabulated Dby Shih
(1983) . For a stationary crack, the “blunted crack profile 1is
calculated as Au = 2u,(m)t. This is shown by the line denoted by
t=ti in Fig. 2. The crack-tip opening displacement, &_, can be
defined where the two l1ines through the apex of the -crack tip
inclined by $30 intersect the crack profile. This definition is
illustrated in Fig.2 and gives

~ 1+1/n
. . 2|8y (m | AL o (1¥1/n (19)
€ (pem, 30%1 Y70 1
n
The term in square brackets is equal to 1.25 and 1.11 for n = 5

and 7, respectively.

After crack growth initiation, the crack profile is given by an
integral of the displacement rate over the prior crack growth
history with the time differential, dt, Dbeing replaced by
d(Aa)/a(ra):

ba (qiml/imtl) (for x>0)

a2 s —— da

- +« yn/(n+l) % a(a')
Au = 2Aue('ﬂ)[I N ] i (20)
n Aa , oy 1/ (n+1)

a'=x)" " " §ar o+ (_x)l/(n+1)t_
o a(a") *
(for x<0)

The coordinate x is measured from the original crack tip in the
direction of crack growth, and t. is the crack growth initiation
time. If crack growth is controlled by a critical-strain cri-
terion, t. is given by eq. (5). For very small crack growth
increments, Aa, the crack growth rate can be approximated by the
initial value of the rate given in eq. (6). Then the crack
profile for x>0 is

20, (m)e_x __ 4 (n+2)/(n+1)
2] c®c n [Aa X ] (21)

n+2 X

(8;(o>)“ c

For large growth increments one obtains from egs. (20) and (7b)
for x>0:

2g(m) e

) Aa,_,__~y1/(n+1)
Au = c 1nf g EL<EJ da' . (22)

@ on" " n+l L L a

The crack profiles in Fig. 2 were obtained from these equations
by interpolation. As egs. (21) and (22) show, the growing crack

develops a sharp tip characterized by Au « (Aa—x)(n+2)/(n+1).

The overall profile resembles that of a sharp notch. A crack
opening angle, 23, may be defined as
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(23)

For x=0, the integral in eqg. [22) is equal to Aa, so that the
crack opening angle can be calculated readily for large Aa. For
n=7, for example, one obtains tan3=13¢ . The profile in Fig. 2
was calculated with ¢ =3%, which leads to a good agreement with
the observed crack profile, which is also shown in Fig. 2.

Consequences of Crack Blunting for the Validity of the HRR Field

In analogy to the analysis of blunting in rate-independent
materials (Rice and Johnson, 1970; McMeeking and Parks, 1979),
it can be concluded that the HRR field in power-law viscous
material is disturbed by blunting over a distance of 3 to 5
times the crack-tip opening displacement, if crack-tip geometry
changes are taken into account. This limits the allowable crack-
tip opening displacement to a fraction of the crack 1length, a,
or the ligament width, W-a, if the HRR field is to retain a
finite range of approximate validity:

&5, =<

t (24)

=|®

Finite element calculations by McMeeking and Parks (1979) showed

that the factor M has values of typically 25 for bend geometries

including the CT specimen and 200 for the center—-cracked plate

in tension. The crack-tip opening displacement at crack growth

initiation is calculated by inserting t=t. from eq. (5) into eq.
: N i

(19). For n=7, this gives

5. 452 eltl/m 4

¢ c c (25)

With £c=1% and x =10um, one obtains &,=23um, which is
sufficiently small to satisfy eq. (24) for most test specimen
configurations. For a more ductile material with ¢ = 3% and
x =50um, the crack-tip openirng displacement is 411um? In this
cSse, a CT specimen with a crack length and ligament width of
20mm would just be sufficient to satisfy eq. (24), whereas a
center-cracked tension specinen should have a crack 1length and
ligament width of at least 164mm. In specimens that are smaller
than that it cannot be expected that the crack tip is surrounded
by an HRR field and that crack growth rates can be transferred
from one specimen to another on the basis of C*.

Consequences for the Validity of the HRR Field for Growing Cracks

After crack growth initiation, the crack tip sharpens, as was
shown in Fig. 2. After some growth, the crack profile approaches
the notch-like geometry described by eq. (22) and by Fig. 2. It
is shown next that the asymptotic stress field at a sharp notch
with an included angle 283 renains very similar to the HRR field
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of a sharp crack as long as the notch angle does not become too
large. Hence it can be expected that C* remains a valid
parameter despite the geometry change from the idealized mathe-
matical crack to a notch-like profile, and that the crack growth
rates are predicted accurately by the models which assume the
existence of an HRR field.

To show the similarity of the crack-tip fields and the fields at
a sharp notch tip, we first consider the stress and strain-rate
singularities at notches,

- . 212 -(n+l)s
o X r s ' £ x© r ’ g & xr ( )

where s depends on n and on the notch angle. For B=0, one
obtains the HRR field with s=1/(n+1). Kuang and Xu (1987) have
derived numerical solutions for arbitary notch angles.They found
that for small 3 the results can be accurately described by

s = Zsell(n+1) (26)

where the linear elastic value, s_q. is obtained from the eigen-
value equation

sin(2(1-s) (m=3)) - (1-s)sin 283 = 0 (27)

(see, e.g., Riedel, 1987). Equation (26) is exact for B=0 oand
n=1. For n=13 it is accurate to 0.3% up to an angle of 23=60. A
series-expansion solution of eq. (27) shows that Se1 deviates

from its sharp-crack limit, s = 0.5, only in the third order
of B. The resulting expression,
3
1-837/(2m)
s = oF1 (28)

is accurate for all n and for moderately large 3. It shows that
the stress singularity at a notch differs from thatoat a crack
by less than 0.3% if 28=30%and by 2.3% if 2B=60. The crack
opening angles observed during creep crack growth are at most
23=45° in very ductile steels.

The distribution of the stress components can be calculated in
closed form in the linear case (e.g. Riedel, 1987). For small
notch angles, the ratio between stress components deviates from
the crack-tip fields in the second order in 3. Directly ahead of
the notch, for example, an expansion up to second order gives

2
cr/oe= 1-83%/2. (29)

For 28=45°, this ratio deviates from the sharp-crack 1limit by
7.7%.

At a notch with a finite opening angle, the notch—analogue to
the C* contour integral, which we denote by N*, is path
dependent. For an idealized geometry of a growing crack
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consisting of parallel-sided crack faces for x<0 and of a sharp
Vv-notch for 0<x<Aa, as was shown in Fig. 2d, the N=* integral
taken along circular paths around the notch tip can be estimated
to vary as

83/ (2m)

*

N = ¢’ (r/ha) for O<r<Aa . (30)

This approximation formula was constructed by requiring the
appropriate asymptotic behavior at the notch tip defined by eq.
(28) and by equating N* to the far-field value C* at r=Aa. Since
the exponent in eq. (30) is small, N* deviates very little_from
C* even at distances very close to the crack tip. For 28=45" and
r/Aa = 1/1000, N* is only 6% smaller than C*.

In conclusion, all features of the fields near sharp notches
with notch angles 28<45" are sufficiently similar to those of
crack-tip fields, so that it appears reasonable to use C* for
describing creep crack growth even in the presence of
considerable changes of the crack-tip geometry.

THREE-DIMENSIONAL ASPECTS

In the past few years, three-dimensional analyses of the deform-
ation fields in cracked bodies have become available. Owing to
the viscous-elastic analogy many of the results developed for
elastic-plastic materials can be applied to creeping materials
as well.

several workers have analyzed test specimen configurations such
as the CT specimen with and without side grooves, with straight
and with curved crack fronts, and with and without modelling
crack growth (e.g. deLorenzi and shih, 1983; Kikuchi and
Miyamoto, 1984; Kienzler and Hollstein, 1987). Others have
analyzed semi-elliptical surface cracks in plates and pipes
(Kumar et al. 1984; smith, Webster and Hyde, 1988; Hollstein and
Kienzler, 1988; see also Schmitt, Kienzler and Hollstein;
Sommmer, this conference).

A convenient reference solution for surface cracks 1is the
approximate, but accurate, solution of He and Hutchinson (1981)
for the penny-shaped crack in an infinite body of power-law
material:

¢* - & (e V2 aa 077, (31)

where o is the tensile stress normal to the crack plane and ©
is the von Mises equivalent stress. (In the derivation of eq?
(31) an equi-biaxial transverse stress is admitted besides the
tensile stress). Introducing the displacement between the crack
faces in the center of the crack, &, gives

»

_
¢ = o . (32)
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For a semi-circular surface crack, Heitmann et al (1984)
suggested to multiply eq. (31) by a factor 1.25, which accounts
for the difference between an embedded crack and a surface crack
in plane strain in linear elasticity. Indeed this approximates
the finite element results of Smith et al. (1988) for n = 11.68
to within 2 to 4%.

In evaluating three-dimensional finite element solutions, the
following theoretical points of view should be kept in mind,
which were discussed by Riedel (1987). Figure 3 schematically
shows the distribution of the stress field on the ligament ahead
of a crack in a power-law material. If crack-tip blunting 1is
neglected pbeforehand, the asymtotic field near the crack front
is the plane-strain HRR field. Plane strain must be approached
asymptotically since the x.- and x.,-components of strain diverge
for r » 0, while the Xx -component femains bounded and can there-
fore be neglectd asymp%otically.

In the center of the specimen the range of wvalidity of the
plane-strain HRR field may either be bounded by the transition
to the plane-stress HRR field if the specimen is relatively
thin, or by the transition to the plane-strain far fields if the
specimen is very thick. The case of a relatively thin specimen
is shown in Fig. 3. Here the transition occurs at a distance
which scales with the specimen thickness, whereas for thick
specimens the plane-strain HRR field is valid in a =zone that
scales with the crack length or ligament width.

The point where the crack front intersects the surface is called
a vertex. At the vertex the range of wvalidity of the plane-
strain HRR field shrinks to zero. A new type of singularity
develops at the vertex, o0 & o °, where p is the distance from

o armaon | O wammen | O[] rersewon ||

ar field on
ligament igament ligament

p-d HRR p-0J HRR

p—-€ HRR

curved crack

crack front

side grooves

Fig. 3. Schematic of the three-dimensional stress
distribution ahead of the crack for straight and

curved crack fronts and for side-grooved specimens.
p-¢ = plane strain, p-o = plane stress.

1511



the vertex, and the exponent s depends on n, and on the angle at
which the crack front hits the surface. For 1linear elastic
material and for a perpendicular crack front on the surface,
Benthem (1977, 1980) has developed numerical solutions. For
incompressible material (Poisson's ratio v=0.5) is s=0.332, and
for v=0.3 is s=0.452.

Bazant and Estenssoro (1979) explore the effect of the angle
between the crack front and the surface in elastic materials.
They find that a square-root singularity, s=1/2, which prevails
in the bulk, is established also at the vertex if the crack
front deviates b% 11° from being normal on the surface if v=0.3,
and by about 20 if v=0.5. Accordingly a growing crack front
tends to establish a shape making such an angle with the free
surface, since a uniform stress singularity along the crack
front is a necessary (but not sufficient) prerequisite for a
uniform stress intensity factor (or J integral) and for a
uniform growth rate. This effect is called crack tunnelling
(Fig. 3b). In nonlinear material, the vertex singularities have
not been evaluated, but experimental and numerical investiga-
tions indicate that crack tunnelling must be more pronounced in
nonlinear material in order to establish a uniform distribution
of J or C* and a uniform growth rate along the crack front.

Sharp side grooves are expected to raise the value of the
exponent s of the vertex singularity. From finite element
calculations of deLorenzi and Shih (1983) it appears that a
side-groove angle of 45  gives an approximately uniform stress
singularity for both elastic and power-law hardening material.
Hence the J integral is relatively constant along the crack
front for an appropriate choice of the side groove depth, and
the range of validity of the plane-strain field is extended near
the vertex, as is shown schematically in Fig. 3c. Corresponding-
ly, growing cracks tend to develop a straight front in side-
grooved specimens.

So far, the fields were discussed neglecting crack-tip geometry
changes. As described earlier, blunting disturbs the fields over
a distance that scales with the crack-tip opening displacement,
6 . The disturbed zone is shown schematically as the hatched
area in Fig.3. If the hatched area is larger than the regime of
the plane-strain field, the local fracture processes occur under
plane-stress conditions. Otherwise, the fracture processes occur
in a zone deformed in plane strain. Contrary to a frequent
misconception, plane-strain conditions near the crack tip do not
imply that the far fields and the load-displacement response of
the specimen must also be close to plane strain.

CONTINUUM DAMAGE MECHANICS

In the models for creep crack growth described earlier cavita-
tion ahead of the crack was assumed to occur in the undisturbed
HRR field which prevails in a power-law viscous material. In a
damage-mechanics model, on the other hand, the effect of damage
on the stress distribution is taken into account.
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The Kachanov-Rabotnov Egquations

The classical damage-mechanics equations are those of Kachanov
and Rabotnov. A damage parameter, ©®, is introduced which wvaries
from O for the undamaged material to 1 at fracture. This is
described by the evolution law

. pot
© = o (33)
(1+¢) (1-w)

Here, D, x, and ¢ are material parameters. The enhancement of
the creep strain rate by damage is described by the equation

; ao”

€= " @ - (34)
(1-)

This pair of equations is an empirical means to describe the
stress/strain-rate response especially in the tertiary stage of
creep. The damage parameter is an internal variable with no
physical meaning, although it is somehow, but not in a strict
sense, related to the cavitated area fraction of grain
boundaries.

A possible generalization of egs. (33) and (34) to multiaxial
states of stress has been worked out by Hayhurst and Leckie
(1984). This problem will not be addressed here. Although the
details of the field distributions depend on the multiaxial form
of the constitutive equations, some essential features can be
derived already from the uniaxial form.

Other damage-mechanics models and their applications to <creep
crack growth will be described in a later section.

Two General Remarks

It is interesting to note that crack growth is automatically

contained in solutions of egs. (33) and (34). Whereever
reaches 1, the stiffness of the material 1is =zero, i.e. the
material has failed locally, i.e. the crack has propagated. No
separate crack growth criterion, such as a critical-strain
criterion is needed, and the theory contains no structural
length, X+

A second remark refers to the range of validity of C*-controlled
creep crack growth in the framework of continuum damage
mechanics. One may expect that a small-scale damage limit can be
defined, in which the stress field is determined by viscous
creep in almost the whole specimen except in a small 2zone near
the crack tip, which is called the process zone and in which the
stress field is strongly affected by the presence of damage.
Such a situation is expected to dominate at short times. Later
the process zone spreads over the whole 1ligament of the
specimen. Only in the small-scale damage limit 1is the process
zone encompassed by a nearly undisturbed HRR field. Hence crack
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growth rates in specimens of different sizes and shapes can be
compared on the basis of C only in this limiting case.

In the large-scale damage range, crack growth rates cannot be
transferred from test specimens to differently shaped components
using C*. A full finite element analysis based on the damage-
mechanics equations is then necessary for each component. Such
calculations were performed by Hayhurst, Brown and Morrison
(1984) . However, this procedure is not only expensive and time
consuming, but it may also lead to serious error. If the 1local
failure of material at the crack tip is accelerated by corrosive
processes, the crack will actually grow faster than predicted by
the damage-mechanics equations which do not contain local corro-
sion. On the other hand, if the crack growth rates measured in
the appropriate atmosphere are transferred to the component
using the appropriate load parameter, the corrosive effect is
properly accounted for. In such a case, a fracture-mechanics
treatment on the basis of C* will be superior to a full damage-
mechanics analysis. It remains to explore the range of validity
of the small-scale damage approximation which is a prerequisite
for the transferability of crack growth rates by C*.

The Growth of a Process Zone and of the Crack in an Extensively

Creeping Specimen

The small-scale damage problem in an extensively creeping speci-
men can be formulated as a boundary layer problem. The crack 1is
considered as being of semi-infinite length and the stress must
approach the HRR field of the non-damaging material at 1large
distances from the crack tip (large compared to the process zone
size, which will be calculated, but small compared to the crack
length and ligament width). The initial condition at the time of
load application, t=0, is the field in a viscous, non-damaging
material. For these initial and remote boundary conditions,
Riedel (1985b, 1987) has shown that the governing equations,
eqgs. (33) and (34) together with the equilibrium and
compatibility equations, have similarity solutions for the
stress, strain-rate, and damage fields. All features of the
fields, including the process zone and the current crack tip
expand arround the original crack tip according to

g
N & T E A ey L LA (35)
pr
where r is the process zone size. The precise definition of
the protess zone is somewhat arbitrary. For example, one may

define the process zone boundary where the equivalent strain
rate is doubled by damage compared to non-damaging viscous

material. The factors of proportionality in eq. (35) cannot Dbe
derived from the dimensional considerations, which give the
general form of eq. (35). Upper- and lower-bound estimates, as

well as a calculation by the finite element method were given by
Riedel (1985Db).

If eq. (35) is differentiated with respect to time and re-

arranged one recognized that the crack growth rate is the same
as in eq. (7) apart from a numerical factor. For the comparison
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one should set x = n, which implies strain-controlled local
failure. Hence in this case the damage-mechanics model leads to
practically the same result as the model in which the effect of
damage on the stress field was neglected.

The stress distribution in the process zone was calculated by
Riedel (1985b) wusing the finite element method. As one would
expect, the stress is completely relaxed at the current crack
tip. Within the process zone, which is of the same order of
magnitude as Aa, the stress increases and approaches the HRR
field quickly outside the process zone.

The Range of Validity of the Small-Scale Damage Approximation

The disturbance of the HRR field by the process 2zone is quite
analogous to the disturbance Dby crack-tip blunting. The
disturbance now extends over a length which is about equal to
the amount of crack growth, Aa. Hence Aa should be limited to
about 10% of the initial crack length or ligament width. Other-
wise the HRR field has no finite range of validity and C* cannot
be used as a correlating parameter. For long cracks in typical
test specimen configurations, 10% crack extension correspond to
60 to 80% of the lifetime, so that ¢* is a valid parameter for a
large fraction of the lifetime. For short cracks, however, one
expects that the range of validity of C* ends at a small
fraction of the lifetime due to wide-spread damage.

It should be kept in mind, however, that this limitation to Cc*
is derived from a specific theoretical model. If the model
contained a nucleation stress which must be attained before
damage accumulation can start, the process zone would not
continue to grow in proportion to Aa for larger Aa. In such a
model, the range of validity of C* would be less restricted.

As an engineering solution to the problem of small cracks,
Webster et al. (1986) propose to calculate the lifetime by
interpolation between the result of a reference-stress concept,
which is appropriate for short cracks, and the result of a
calculation based on C¥*, which is appropriate for longer cracks.
A full damage-mechanics finite element calculation could also
resolve the problem, apart from the fact that crack growth by
local corrosion cannot be described, as was already mentioned.

Growth of the Crack Within a small Creep Zone

In a material model that includes elastic strain rates according
to

. . ac"
+

™
"
m|Q

-, (36)
(1-0) "

the process zone and the crack may either grow inside the creep
zone or may overtake the growing creep zone. The first case is
considered here, while the latter is discussed in the mnext
section.
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If the crack tip and the process zone Jgrow well within a creep
zone which is itself small compared to the specimen dimensions,
a boundary layer problem can be formulated with the remote
boundary condition being the HRR field, eq. (10), with the
short-time limit of eg. (11) for C(t) inserted. This problem
again has similarity solutions. The crack and the process zone
expand around the original crack tip as described by eq. (35)
but with C* replaced by C(t) « K /Et. Hence, also in this case
the crack growth rate is the samé as in the model based on a
critical-strain criterion, which neglects the disturbance of the
stress field by damage. Again there will be a smooth transition
to crack growth in an extensively creeping specimen as described
by eq. (7) with C* replaced by c(t) from eq. (11), unless the
crack overtakes the creep zone before the extensive creep limit
is reached.

Crack and Process Zone Growing Outside the Creep Zone

LKI—Controlled Growth Under Small-Scale Creep Conditions)

If the crack grows faster than the creep zone, the process zone
is directly embedded in the elastic singular field. This means
that there is no creep zone, and creep strains are important
only where they are significantly enhanced by damage.

For this case, Riedel (1988) has developed similarity solutions
in which the crack expands according to

2 [ (EA) (37)

¢+1,¢+1-n 2/l (n-1) (¢+1) -nx) 1
Aa‘XKI ] .

Dn

Since this solution was derived assuming that the crack had
overtaken the creep zone, it can only be valid if Aa>r _. This
and other requirements for the validity of the solutidns have
been evaluated by Riedel (1988). No complete picture could be
obtained, since in certain regimes of time and material para-
meters the solutions were contradictory.

It is not yet clear whether or not a solution of the damage-
mechanics equations exists for a constant crack growth rate
under small-scale creep conditions. No arguments could be found
that no such steady-state solution should exist, but no such

solution has actually been constructed. However, from simple
dimensional reasons it is clear that, if a steady—statezsolution
exists, the crack growth rate must be proportional to K._. Oldeﬁ

theories based on a critical-strain criterion had giveni a « K
(e.g. Hui and Riedel, 1981). Experimental results (e.g. Riedef
and Wagner, 1984) tend to support the stronger dependence
predicted by the older theory.

Further, it turned out that the irregularities in crack growth
rate that had been found in models based on a critical-strain
criterion (Hui and Riedel, 1981; Riedel and Wagner, 1981; Wu,
Bassani and Vitek, 1986) could not be found in the damage-
mechanics model. The reason for this is that the singular field
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at a growing crack in elastic/power-law viscous material (Hui
and Riedel, 1981) plays a role and causes irregular growth in
the older models based on critical strain, whereas it has no
range of validity in the damage-mechanics model.

In conclusion, the theory of creep crack growth under
small-scale creep conditions is less well understood
theoretically than creep crack growth under extensive creep
conditions or during the transients to extensive creep.

Other Damage Mechanics Models

Several authors have tried to develop model-based damage-mecha—
nics equations and to apply them to problems involving macro-
scopic cracks. Most of them start from a model proposed by
Hutchinson (1983). He argues that under a wide range of con-
ditions cavity growth is constrained (Dyson, 1976, 1979; Rice,
1981), which means that the cavitating grain boundary facets
behave 1like microcracks in the sense that they transmit no
tractions. Consequently, Hutchinson models a cavitating creeping
solid as a power-law viscous material containing a distribution
of penny-shaped microcracks. He carries out the analysis for a
small number density of microcracks and obtains (for uniaxial
tension):

£ = A(1+0)o™ . (38)

Now the damage parameter has the well-defined meaning

n+l 3

©w= —————— d°N (39)

2@1+3/m)f2 B
with the diameter d of the microcracks and their number density
ch. No attempts were made by Hutchinson to provide an evolution

18§ for ©. This part of the problem must probably be solved
empirically, for example by adjusting the parameters of the
evolution law, eq. (33), to experimental data.

Hutchinson's (1983) constitutive model has been extended to
larger concentrations of microcracks by Riedel (1987). If a
self-consistent argument is worked out in a very simple, one-
dimensional manner, one obtains

=]

-
€T 1% - (48]

This differs from the Kachanov-Rabatnov formulation, eq. (34),
by the missing exponent n in the denominator.

Instead of the conventional self-consistent method, one can
employ the differential self-consistent method (see, e.g., Duva,
1984) . If applied in the same approximate manner as above, the
differential scheme gives

e = e“ac™ . (41)
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An exact, but numerical evaluation of the differential self-
consistent scheme by Rodin and Parks (1986) suggests that eq.
(41) overestimates interaction effects between the microcracks.
Their numerical results can be approximated more closely (to
within 2% up to @ = 1 for n = 3) 1if one assumes that crack
interactions occur only through the deviatoric part of
Hutchinson's result, whereas the dilatations due to the cracks
are simply additive. This leads to

: & [1+ }2_1:)—1] e(n-1)0/(n+1) 0 (42)

in uniaxial tension.

These approximate self-consistent estimates are useful in provi-
ding the constitutive equations in analytical form. Their accur-
acy should be checked by comparison with periodic or cell models
which are treated by finite elements. A first comparison of eq.
(40) with numerical results of Tvergaard (1984a,b) for n = 5 and
@w = 0.38 gave a good agreement to within 1%. In this case, the
strain rate predicted by egs. (41) and (42) is 10% low, and the
dilute estimate, eq. (38), is 15% low.

Bassani and Hawk (1987) have summarized the three-dimensional
forms of some of these constitutive laws and have added another
one. They have also described methods to solve the damage
mechanics equations for crack growth problems by the finite
element method, and have provided first numerical solutions.

Tvergaard (1986) has also developed finite element solutions of
damage-mechanics equations for crack geometries. He uses a
constitutive model similar to that of Hutchinson (1983) which is
valid for a dilute concentration of microcracks. He combines the
constitutive model with an imposed crack growth criterion, which
is not needed in Kachanov-type models.

A common feature of most, if not all, of these damage-mechanics
models is that they allow for similarity solutions in the
small-scale damage limit, just as does the Kachanov model.
Finite element results should be checked whether they are
compatible with the required similitude of the fields. On the
other hand, they should be evaluated for the range of wvalidity
of the similarity solutions which defines the range of wvalidity
of the respective load parameters such as C*.

LOAD PARAMETER MAPS

Load parameter maps are diagrams with reference stress (or net
section stress) on the horizontal axis and time on the vertical
axis (Riedel, 1985a, 1987). A schematic is shown in Fig. 4. ©On
this map the regimes are shown in which different 1load para-

meters - K., J, C,_, C* - determine the crack growth behavior.
The lines Separating these regimes represent the characteristic
times t., and t, given in earlier sections. Crack-tip blunting

gives afiother fine denoted by t, bounding the ranges of validity
of C* and of J. Finally, the regime of C* is bounded by the
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growth of a process zone at a certain fraction of the lifetime
(the hatched band in Fig. 4) .

Such a load parameteromap was constructed for CT specimens of a
ferritic steel at 540 °C by Riedel and Detampel (1987]. The
location of the boundaries on the map depends on material,
temperature and specimen shape, but not on the specimen size.
The effect of specimen shape is small if the reference stress is
used on the horizontal axis.

c* t
power-law,
VisScous N
Cr \\creep N

primary to. q15) "X
creep ty

t;. eq.(14) ;. eq.(9)
« PEE T )|asm
elastic- 1 plastic E 813

K or C*

diffusion creep

N
~

log t

log Ofef

Fig. 4. Load parameter map (schematic) .

Copyright ASTM. Reprinted with permission.

SUMMARY

If a material behaves as a nonlinear viscous solid, C* is the
appropriate load parameter to describe creep crack growth. This
has been confirmed experimentally for many creep—ductile
materials.

Measured crack growth rates can be explained by models in which
the micromechanism of failure is assumed to be strain controlled
(e.g. constrained grain boundary cavitation). The crack growth

n/(n+1) and to depend on the

1/(n+1).

rate is predicted to vary as a x cx
amount of crack growth, Aaj for large Aa is a « Aa
Crack-tip blunting and the geometry changes during crack growth

have been described, and conclusions have been drawn regarding
the range of validity of C* in the presence of blunting.

The three-dimensional field distribution ahead of a crack has

been discussed. Near the crack front the field approaches a
plane-strain field unless the disturbance by blunting has a
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greater range than the plane-strain field.

At short times the range of validity of C* is bounded by
elastic-plastic deformations. Here KI or J predominate.

The crack-growth behavior during the transient from the elastic-
plastic response to steady-state creep can be described by the
crack-tip parameter C(t), which is approximated by the easily
measurable parameter Ct' The same is true for primary creep.

Tertiary creep is included in the form of a damage—-mechanics
description. This leads to calculated crack growth rates which
practically agree with those obtained earlier from a critical-
strain criterion. Further the damage-mechanics model specifies
the limitation to C* due to wide-spread damage.

The ranges of validity of different load parameters can be shown
on a load parameter map.

The modelling of creep crack growth under small-scale creep
conditions has not been entirely successful. Slightly different
models lead to very different predictions of the «crack growth
behavior.

The effects of corrosion on creep crack growth have not yet been
modelled.

For practical purposes it would be desirable to enhance
experimental and theoretical work on creep crack growth in welds
and in their heat-affected zones.
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