3
i

Near-tip Fields During Creep Crack Growth by
Grain Boundary Cavitation

F. Z. LI*, A. NEEDLEMAN™** and C. F. SHIH**
*Department of Mechanical Engineering, University of Michigan,
Ann Arbor, MI 48109, USA
“*Division of Engineering, Brown University,
Providence, RI 02912, USA

ABSTRACT

A synopsis of recently obtained results (Li, Needleman and Shih, 1988b) on near tip fields
during transient creep crack growth under plane strain and small scale creep conditions is
presented. In the analyses, full account is taken of the finite geometry changes accompanying
crack tip blunting and the material is characterized as an elastic-power law creeping solid with
an additional contribution to the creep rate arising from a given density of cavitating grain
boundary facets. When the crack growth rate is faster than the growth rate of the creep zone,
HR singular fields (Hui and Riedel, 1981) dominate over the crack tip region. For a crack that
grows more slowly than the creep zone, HIRR type ficlds (Hutchinson, 1968, Rice and Rosengren,
1968 and Hutchinson, 1983) dominate over the crack tip region. Regardless of which of the two
singular fields dominates for the growing crack, finite strain effects are significant over a size
scale of the order of the crack opening displacement at crack growth initiation.
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INTRODUCTION

There is considerable interest in elucidating near tip behavior during transient crack growth,
(Riedel, 1987, Wilkinson and Vitek, 1982, Bassani, 1981, Wu et al., 1986, Hui and Banthia,
1984, Hawk and Bassani, 1986 and Bassani et al., 1988). One impetus for this stems from
the search for characterizing parameters such as Ky, C* and J. The characterizing parameter
formulation for analyzing crack growth presumes that the damage (or at least most of the
damage) is confined to a rather local process zone and that the fields in the surrounding annular
region are well approximated by certain singular fields. Presuming that the mechanism of crack
growth does not change and that the magnitude of the singular fields can be related to the
crack geometry, remote loads and material parameters, the characterizing parameter approach
provides a framework for predicting fracture behavior in structures from measurements on test
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specimens. Furthermore, when this approach is applicable, the single characterizing parameter
controls the evolution of damage and hence the rate of crack growth. A different approach to
the analysis of creep crack growth involves the solution of full boundary value problems based
on a constitutive relation that has one or more internal variables that characterize damage
evolution. This methodology has been used by various investigators, for example (Hayhurst et
al., 1984, Chaboche, 1988 and Tvergaard, 1986).

Here, a synopsis of results on near tip fields, during transient creep crack growth under plane
strain and small scale creep conditions is presented (Li et al., 1988b). The analyses use the
micromechanically based constitutive framework of (Tvergaard, 1984ab). A more complete
description of the results and of the analysis procedure is given in (Li et al., 1988b).

BOUNDARY VALUE PROBLEM FORMULATION

A small scale creep boundary value problem is analyzed in (Li et al., 1988b). Attention is
confined to quasi-static deformations and body forces are presumed absent. Traction free con-
ditions are imposed on the crack surface, and tractions corresponding to the mode I plane strain
elastic stress fields are imposed along a circular arc remote from the crack tip at time ¢ = 0 and
held constant thereafter.

The material is characterized as an elastic-power law creeping material, with an additional
contribution to the rate of creep deformation arising from a given density of cavitating grain
boundary facets as depicted in Fig. 1. A full finite deformation phenomenological constitutive
description of this process has been developed (Tvergaard, 1984ab), extending previous work
(Hutchinson, 1983 and Rice, 1981).

The rate of deformation tensor, d, is written as the sum of an elastic part, d°, and a creep part,
de¢, so that d = d€ + d°, where

d® = (14 v)8/E — v(6: DI/E 1)
and ,
e ., 0 30 3n—-10 s—o 2 s—o
d¥ = —_ ) | =—— st s ny\2 ny— _
co(oo) [25+P{2n+16( 5 ) +n+1( = )n®n}] (2)

where & is the Jaumann rate of Cauchy stress, I is the identity tensor, E is Young’s modulus
and v is Poisson’s ratio. The notation A : B denotes the dyadic product; i.e. A : B = AYBj;.
In (2), n is the creep exponent, x ® y denotes the tensor product having components z'y’ arJul
o =0 —onl, om = (1/3)(@ : 1), 3* = (3/2)0' : ¢'. Here, s = i-0 - N, representing the
macroscopic normal stress on cavitating facets with normal fi in the current configuration. The
parameters o, and p are internal variables; o, is the average normal stress in the vicinity of
the voids and p is a measure of the density of the cavitating facets, which, in the calculations
is prescribed to have the constant value 0.20.

Evolution equations are specified for fi and for 0,. The evolution of f is obtained from the
geometrical relation n = n - F~1/|n-F~1|, where | |denotes the norm of a vector and n is the
normal to the cavitating grain facet in the reference configuration. The evolution equation for
o, comes from the description of grain boundary void growth. The voids on the grain boundary
facet grow by the combined processes of grain boundary diffusion and plastic dislocation creep in
the adjoining grains. The physical situation modelled is shown in Fig. 1 and specific expressions
for the evolution equations for the internal variables are as given by (Tvergaard, 1984ab) and
can also be found in (Li et al., 1988b). Failure is taken to occur when the cavities on the grain
boundary facets coalesce to form open microcracks, i.e. when the cavity radius equals the cavity
half spacing, (Tvergaard, 1984ab).
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Fig. 1. (a) Spherical-caps shape of asingle cavity. (b) Equally spaced
cavities on a grain boundary. (c) An isolated, cavitated grain
boundary facet in a polycrystalline material.

To explore the characterization of stress and deformation fields for growing cracks and the
dependence of these fields on crack growth rate, values of the stress intensity factor K were
chosen (Li et al., 1988b) to produce two very different responses—a fast growing crack and
a slowly growing crack. For the fast growing crack case, the stress intensity factor Ky is
(K1/00)? /Do = 1250, where Ag/2 is the initial radius of the semi-circular notch representing
the crack tip. In the other case, (K1/00)?/ Ao =312.5 is specified, which leads to a much more
slowly growing crack and, hence, to a larger creep zone.

NUMERICAL RESULTS

The radius of the cavitating grain boundary facets, the initial void half spacing and the initial
void radius are specified by Ro = 0.05A0, bo = 0.1Ro, ap = 0.1bp = 0.01Ro. It is assumed
that the cavities are crack-like initially so that the initial void volume is taken to be zero. The
material properties are specified by oo/ E = 0002, Poisson’s ratio v = 0.3 and n = 5. The
material parameter éo serves to set a characteristic time scale, 1/éo. Although the focus is on
the characterization of near-tip fields for growing cracks, we begin by briefly considering the
near-tip stress and deformation fields for a stationary crack.

Near Tip Fields prior to Crack Growth

Based on the constitutive equation (2) with o, = 0, (Hutchinson, 1983) has shown that the
HRR (Hutchinson, 1968 and Rice and Rosengren, 1968) type asymptotic near-tip stresses and
strain rates for a stationary crack have the form,

o C(t) 1/(n+1) -

5 = 5 [50001("7!’)"] 7i5(0 1) 3
. cw M. @
T °[eoaol(n,p)r] e
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where r and 6 are the polar coordinates centered at the crack tip. The constant I and the
-variations of the suitably normalized functions &;; and €;; depend on the creep exponent n
and the density of the cavitating facets p. With p constant, the amplitude parameter C(t) is

cly = /[Wﬁl e D] ()

which can be shown to be path independent for all contours 5§ around the crack tip in the region
where the strain rate is dominated by the creep strain rate. In (4), ¥ is the normal to the path
ds in the current configuration, and W = [n/(n + 1)]o : d for a power law creeping solid.

The numerical results, (Li et al., 1988ab), show that before crack growth and after well developed
creep deformation, the angular variation of the numerically computed stress and strain rate
fields, away from the region where finite strain effects dominate, are well approximated by
HRR type field (Hutchinson, 1968, Rice and Rosengren, 1968 and Hutchinson, 1983) angular
variations. Finite deformation effects are significant within a zone that has dimensions of the
order of the crack tip opening displacement.

Near Tip Fields for a Fast Growing Crack

A comparison between numerically computed near tip field quantities and the HR asymptotic
fields (Hui and Riedel, 1981) for growing cracks is shown in Fig. 2. For a crack growing at a
rate £(t), when n > 3, the asymptotic stress and strain fields take the form (Hui and Riedel,
1981),

, 1/(n=1)
o Q) 5.
oij = Anoo [éo(E/Uo)T] a,,(0,n)
l( ) 1/(n-1) (5)
ao t .
€j = A gy [m] &j(0,n)

where A, is a numerical factor depending on n.

In (5) é(t), the crack growth rate, is undetermined by the asymptotic analysis and, in fact, is
unspecified by usual continuum analyses. It is determined by the micromechanics of the failure
process and the HR field (Hui and Riedel, 1981) values in Fig. 2 were obtained by substituting
the numerically computed crack growth rate into (5). In these calculations, as well as in the
slow growing crack calculations, crack growth occurred straight ahead along the initial crack
line, (Li et al., 1988b). In Fig. 2, the Cartesian components of Cauchy stress, 017 and o022, are
normalized by the reference stress oy and the distance r from the current crack tip is normalized
by the crack opening at the time that crack growth initiates, A;. The solid line is obtained
from the HR (Hui and Riedel, 1981) singularity, (5), and the points are obtained from the finite
element solution. In Fig. 2c the effective strain € is calculated from & = (2/3)(e} + €} —e1€2)(1/?),
€ = log A; and €2 = log A2, where A; are the principal stretches.

Figure 2 shows very good agreement between computed field quantities and the HR (Hui and
Riedel, 1981) asymptotic values over the range 2 < r/A; < 10. Since the current crack tip
opening is less than Ay, the range of dominance of the HR field (Hui and Riedel, 1981) is
quite large when expressed relative to the current crack tip opening. Near the notch tip, the
lowered value of oy; and the increased eflective strain, €, are both consequences of the finite
strains accompanying blunting. However, it should be noted that the numerical results do not
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Crack tip stress and strain distributions in the row of elem-
ents closest to the initial crack line at t/t; = 2.20, for the

case with (K1/d0)?/Ao = 1250, (a) a11/00, (b) 022/00, (c) €.
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accurateI.y resolve the.distribution of field quantities very near the crack tip since, for example
the traction free condition on the notch tip requires ¢3; = 0 and the transition in Fig. 2a fron;

au/ao ~ 5 to 0 occurs over one element.

Near Tip Fields for a Slowly Growing Crack

Figure 3 shows a comparison of computed field quantities with the HRR t i

1968, Rice and Rosengren, 1968 and Hutchinson, 1983) solution, (3), fc{fi}fislgl(fvtll‘;tcg};lors;)r?’
crack. Here, the Cartesian components of Cauchy stress, 011 and 022, are normalized b thi
refergnce stress 0g and the distance r from the current crack tip isnn,ormalized by the irack
opening at the time that crack growth initiates, A;. In this figure, the solid line is obtained
fro.m the HRR (Hutchinson, 1968 and Rice and Rosengren, 1968) type singularity, (3), and the
points are obtained from the finite element solution. This slowly growing crack is “;ell c’ontained
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Fig. 3. Crack tip stress distributions in the row of elements closest
to the initial crack line at ¢/¢; = 128, for the case with
(K1/00)%/Ao = 312.5, (a) 011/00, (b) g22/00.
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within the creep zone. The HRR type field (Hutchinson, 1968, Rice and Rosengren, 1968 and
Hutchinson, 1983) values are obtained taking the value of C(t) appearing in (3) equal to its
computed, path independent value within the creep zone. It can be seen from these figures that
the computed values of stresses are in excellent agreement with the HRR type field (Hutchinson,
1968, Rice and Rosengren, 1968 and Hutchinson, 1¢83) values over the range of about 3-20 times
the crack opening at the time of crack growth initiation, A;. The comparison for the effective
strain rate is similar to that for the stationary cack, (Li et al., 1988b). Within the context
of small strain theory for a mathematically sharp crack, the existence of HR (Hui and Riedel,
1981) singular fields at the crack tip does not depend on crack speed, but the finite strain region
at the crack tip suppresses the HR (Hui and Riede, 1981) fields in the calculation for the slowly
growing crack, (Li et al., 1988b).

CONCLUDING REMARKS

The calculations in (Li et al., 1988ab) show that prior to crack growth, the stress and strain rate

~ fields are well approximated by HRR type (Hutchinson, 1968, Rice and Rosengren, 1968 and

. Hutchinson, 1983) singular fields, (3), in a region that is roughly a fifth of the creep zone. For
a growing crack, at a high Kr value, so that the rate of crack growth is faster than the rate of
srowth of the creep zone, HR (Hui and Riedel, 1981) singular fields, (5), dominate over a zone
that is more than ten times the crack tip opening at the initiation of crack growth (denoted by
Ay), see Fig. 2. The magnitude of the fields scales with the crack growth rate £. At alower Kr
value, where the rate of crack growth is slower than the rate of growth of the creep zone, HRR
type fields (Hutchinson, 1968, Rice and Rosengren, 1968 and Hutchinson, 1983) dominate over
4 zone which is about twenty times Ay, see Fig. 3. For durations up to ten times the initiation
time t7, the HRR type fields (Hutchinson, 1968, Rice and Rosengren, 1968 and Hutchinson,
1983) scale with C(t). Regardless of which of the two singular fields dominates for the growing
crack, finite strain effects were found to be signifcant over a size scale of the order of the crack
opening displacement at crack growth initiation, (Li et al., 1988b).
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