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ABSTRACT

Dislocation pileup along an inclined direction from a crack tip has been
observed in metals during tensile deformation in an electron microscope.
Dislocations are emitted from the crack tip, move through a dislocation
free zone and pile up in the plastic zone. The problem of inclined pileup
of screw dislocations at a crack tip with a dislocation free zone has been
solved by applying the Wiener-Hopf method. The result can be used to cal-
culate the crack tip blunting and the local stress intensity K for the
applied stress intensity Kj. According to the fatique theory of Laird or
Neumann, the crack propagation per cycle has the order of magnitude of the
blunting. The blunting versus K3 is then plotted. It has the shape of the
near threshold fatigue curve. To plot this curve, the local stress inten-—
sity K has been assumed to be the critical value Kg for the dislocation
emission at the crack tip.

INTRODUCTION

Recent electron microscope studies of dislocation behavior at the crack tip
of various metals have shown a dislocation-free zone (DFZ) often located
between the crack and the plastic zone.'™ As the crack moved, the crack
tip generated, primarily, edge dislocations on planes that were inclined to
the crack plane. Although the slip geometry with two inclined pileups of
dislocations symmetric with respect to the crack was occasionally observed,
the crack often emitted dislocations on only one plane which was inclined
to the crack plane.
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The distribution of dislocations in the plastic zone coplanar to the crack
was first treated by Bilby, Cottrell, and Swinden? (BCS). The BCS theory
was recently extended to include the DFZ as part of the crack tip equilib-
rium configuration.s_B The presence of a DFZ was attributed to difficulty
in generating dislocations at the crack tip, and this difficulty was
expressed in terms of a critical stress intensity factor K  required for
dislocation generation.s_8 The constant K_ can be derived from the model of
Rice and Thomson® in terms of the core radius of a dislocation. General
discussions on the shielding effect ‘were given by Thomson'®  and
Weertman.'' Effects of pileup were also studied by Majumdar and Burns'? and
Lis'3 A review was written by Thomson.'®  The present calculation can
evaluate the stress intensity factor at the crack tip in the presence of a
dislocation pileup. The result is a function of the length e of the DFZ
and the length & of the plastic zone.

In the present work, we have treated the distribution of screw dislocations
on a plane which is inclined to the crack. The problem is formulated as an
integral equation which represents an equilibrium condition between the
dislocations and the crack similar to the BCS model. This dislocation
pileup equation is solved by applying the extended Wiener-Hopf technique.
The extended Wiener-Hopf technique is required because the boundary condi-
tion in the DFZ is different from that in the pileup region. A detailed
description of the method of solution has been published elsewhere.'® The
problem of inclined pileup of sctrew dislocations without a DFZ was solved
recently by wusing the usual version of the Wiener-Hopf technique.'?
Although the mathematics involved is tedious, the method yields simple
analytic expressions for the BCS condition and the local stress.intensity
factor. It is interesting to observe in this paper that a rearrangement of
the numerical results leads to the near—threshold fatigue- curve. A discus-
sion on fatigue threshold was given by Mura and Weertman.'’

PILEUP INTEGRAL EQUATICN

As shown in the previous paper,l6 the stress distribution at z (z = x + iy)

due to screw dislocations located at zj (k =1, 2, ...) is

K, ub

k 1 o1
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where the summation excludes the self image term due to the dislocation at
z and K3 is the applied stress intensity factor of mode 3 deformation. The
force on the dislocation at z along the inclined angle ¥ = an is the real
part of oe’®. If this force is balanced by the friction stress o_., then
the integral equation of equilibrium can be derived by replacing the summa-
tion in Eq. (1) with an integration, that is,

1
cos ¥ — g, = _ub f(r”) [ R 2)

1
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where f(r) is the distribution function, e denotes the length of DFZ,
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and & denotes the length of the plastic zone. The self image term,.which
is the second term in Eq. (1), is neglected because it is a differential of
second order.

After applying the Mellin transform to the nondimensional form of Eq: 2),
we obtain the extended Wiener-Hopf equation in the complex plane s in the

form
e5 6, (s) + T(s) + H_(s) = B(s) K(s) (3)
e

where t, = /e/% and T, G,, and H_ are the Melli? transforms of the app¥1ed
stress, the DFZ stress, and the stress outside of the pileup region,
respectively. Also, B(s) is the transform of rf(r) and K(s) is the trans-
form of the dislocation interaction force. Equation (3) is in a form

suitable for solution by using the extended Wiener—Hopf technique.

SOLUTION OF THE PILEUP INTEGRAL EQUATION

In this paper, we shall not describe the method of solution, but only
illustrate and discuss the results obtained. Numerical results were also
obtained by using the finite difference method direct!y applied to the
integral equation. The results from the two methods are in good agreement.

The DFZ condition which is derived by imposing a finite magnitude of stress
at the end of the pileup region is obtained in a simple expression,

. (1 +a)/2 (1 — a)/2
20,(210) " 2/ (kym) = gle/g,@)sinan(1 + T T HTA — ) /(an)

(4)
where g(e/%,a) is a function which becomes unity when the DFZ is not pre-
sent.

For e/% = 0, Eq. (4) is plotted in Fig. 1. We shall use the BCS condition
to denote the DFZ condition at e/g = 0. For e/% # 0, the function g(e/%,a)
is plotted in Fig. 2 as gle/2,a) = JF_. It is show? numerically that
gle/%2,a) is essentially independent of the angle ¥ and is smaller than ?ne
for all e/%. Equation (4) provides a relationship between the applied
force K3 and the pileup length % for a range of values of e/% at any angle
of inclination Y.

The total number of dislocations N has been obtained as

obe/G = h(e/%,a) sin (an)/(am) , (5)
where G = K;2/2u and h(e/%,a) is plotted in Fig. 2 as h(e/zfa) = Fl -an.
The function h(e/%,a) is equal to one for e/% = 0 and this function 1s
essentially independent of the angle of inclination Y. For e/% = 0O,

Eq. (5) is also plotted in Fig. 1.

A combination of Figs. 1 and 2 will provide the numerical values
of 2/G, 2/N, and N/G for a given value of e/f% at any angle of inclina-
tion Y.
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Fig. 1. BCS condition as expressed in terms of the
pileup length %, the applied stress G, and the
total number of dislocations N in polar coor-
dinates.
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Fig. 2. Stress intensity factor K and reduction factors

F 2 and F&, for 2/N and /G, respectively, in
the BCS condition as functions of the ratio
e/L.
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The local stress intensity factor K at the crack tip is defined as the dif-
ference between the applied stress intensity factor K; and the factor Ky
due to the presence of the shielding dislocations. The numerical values of
K/K; are also plotted in Fig. 2. The vilue of K/K; depends strongly on the
angle of inclination ¥. For increasingY, it is observed that dislocations
located at the same distance from the crack tip contribute less to the
shielding of the crack tip, thus, more dislocations (or smaller values of
e/1%) are required to reach the same value of K/K3.

INCLINED EMISSION OF DISLOCATIONS VERSUS BRITTLE EXTENSION

During direct experimental observation of the inclined pileup of disloca-
tions, fast emission of dislocations along an inclined angle occurs
first. The emission then stops and ¢n equilibrium configuration of the
inclined pileup is observed. At this moment the driving force for the
emission of dislocations must have been reduced to the critical value K
owing to the shielding effect of the enitted dislocations. For a measure
value of e/%, Fig. 2 will provide the critical value of K. After the emis-—
sion theory is applied, this critical K must be equal to its theoretical
value K_ defined by the core radius. The value of K_ is then compared with
the brittle extension intensity K. to determine whetEer the crack will emit
dislocations or propagate in a brittle mode, as discussed in previous
papers.6'7

As mentioned in previous papers the dislocation emission along an inclined
angle is controlled by the critical enission constant K_. For the local
stress intensity K smaller than K, dislocations will not be emitted from
the crack tip and, therefore, blunting will not be created.

FATIGUE CRACK PROPAGATION CURVE NEAR THRESHOLD

Numerical values plotted in Fig. 2 show that the local stress intensity
factor K and the total number of dislocations N for the inclined pileup are
functions of the size of the dislocation-free zone e/%. As e/% decreases,
the local K tends to zero and the total number of dislocations N reaches
that as required from the BCS case.'’ We replot Eq. (4) and a combination
of Eqs. (4) and (5) with e/% as a single parameter. The resulting curve of
b-N versus K3/K is shown in Fig. 3. In this plot, we eliminated % by
the solution for K//% and assumed K = K, where K is a material constant.
This curve has the shape of the frequently observed near-threshold fatigue
curve. It has the property that for large K3 b-N tends to K32 and Kj
decreases to a threshold value K, as its lower limit. The two ends of the
curve correspond to e/% » 0 an e/e » 1 if the curve is viewed from its
parameter e/%.

By applying the fatigue theory of Laird or Neumann, the numerical result
shown in Fig. 3 is a near—threshold curve of the following problem. Cyclic
load is applied to a solid body containing a semi-infinite crack. The
applied stress intensity K3 is increased to a finite value and then reduced
to zero repeatedly. During the loading phase N dislocations are piled up
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Fig. 3. The inclined pileup solution for b-N versus
K3/K_, where K_ is the local stress intensity
factor equal to the dislocation emission inten-
sity. Applying the fatigue theory of Laird or
Neumann, the value b-N is equivalent to fatigue
crack propagation per cycle dc/dN and K3/K_ is
equivalent to AK. dc/dN ~ K32 for large AK
and AK threshold tends to Kg'

along the direction 45 degrees from the crack plane and create a COD of
b-N. According to the theory of Laird or Neumann, the crack will advance
along the direction of the crack plane with an order of magnitude equal to
b-N. A new crack tip is created. The applied K3 is then reduced to
zero: The inclined dislocation pileup is left behind the new crack tip and
possibly results in some residual stress. The next loading phase will
generate new inclined pileup of dislocations along slip plane, from the
newly created crack tip. The crack tip then will advance another b-N with
new crack tip. The unloading is then followed. The process repeats.
Therefore, the plot shown in Fig, 3 represents fatigue crack propagation

per cycle versus the applied K3 vith the threshold value K_ as its lower
limit.
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DISCUSSIONS

Perhaps we need to emphasize that in contrast to the BCS theory the finite
threshold value K3 = K  derived in this problem is a consequence of the
finite dislocation emission resistance K and the existence of a disloca-
tion-free zone in the fracture model. It is interesting to observe that as
the applied K3 increases the crack propagation per cycle dc/dN tends to
K32. Various ways to extend the K32 to a higher exponents term K;" have

been proposed in the literature such as treating the crack tip region as
18,19

wedge crack.
The near-threshold curve is derived based on a mode 3 solution with
inclined dislocation pileup solution. The more realistic solution is the
edge dislocation pileup problem. An even better problem probably is the
double pileup. As the crack advances in each loading and unloading phase,
residual stress is created due to the remaining dislocations in the earlier
pileup. The subsequent pileup does not consider the influence of the

residual stress.
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