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ABSTRACT

viewing extension of crack by fatigue as a sequence of discreet growth
steps of finite magnitude, we employ the concept of a cyclic R-curve to
provide theoretical estimates of the fatigue crack growth rates for yield-
ing and/or nonlinearly viscous materials. Influence of the material param-
eters such as ductility, tearing modulus and strain hardening exponent on
the rate da/dN has been investigated. Two 1imiting cases of practical
interest, 1) low cycle fatigue, and 2) near-critical fatigue, have been
shown to obey certain simple laws such as a power and an exponential law.
For the former case the rate of growth approaches zero as eM, while
for the latter da/dN becomes unbounded as exp(1/¢), where m is a con-
stant and ¢ denotes a small nondimensional quantity proportional to the
intensity of the outer stress field.

Appropriate closed form expressions, valid for the entire range of fatigue
process, excluding the near threshold propagation, are suggested.
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INTRODUCTION

The constitutive relations of a material dictate certain specific forms of
the restraining stress within the structured end-zone associated with a
sub-critical crack. In what follows the crack will be represented by an
extended Dugdale model which incorporates

(1) strain hardening for stresses exceeding the yield stress, oq, and
(2) quasi-static crack extension governed by the wnuk's final stretch
(or CTOA) growth criterion.

Within the computational frame of such model, the displacements ahead of
the crack tip are not zero, but they gradually approach zero over a certain
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f]nite length R, which measures the extent of the plastic zone. Thus the
singular stress no longer exists at the crack tip, but it is replaced by
the so-called restraining stress S defined over the distance xj (measured
from the crack tip) which varies within the interval [0,R]. Variation of
the rgstraining stress is deduced from the constitutive laws of elasto-
plastic strain hardening solid and it is of the following form

R
°o(z)° = const. 0<x; <8
S(x1) = ‘e . (i)
oo(;T) b <x < R

for the_Ramberg—Osgood strain hardening material, in where the hardening
index a is related to n and N as follows

-
1+n
a = ii
N_ o
N+1
The non—h§rdening prpblem of perfectly elasto-plastic solid is included in
the Eq: (1) as a 1im1ting case; when a > N »> 0 (or n » «»), we obtain S(xj)
= gg Within the entire end zone, which corresponds to the Dugdale model.

Symbol A denotes the extent of small region immediately adjacent to the
crac& th, the so-called process zone, which enters into the theory through
a §r1tgr10n of quasi-static crack extension, such as Wnuk's final stretch
cr1tgr1on, Wnuk (1972, 1974, 1981) or Kfouri et al. concept of energy sep-
arqt1oq rate, Kfouri and Miller (1976), Kfouri and Rice (1977), or the CTOA
criterion suggested by Shih and coworkers, cf. Kumar, German and Shih
(198{)[ or criterion of Rice and Sorensen (1978) who employed a concept of
a cr1t1ca1.crack opening measured a fixed distance behind the tip of the
crack. Smith (1980) has shown that all these criteria are equivalent among
each gtper, and all of them can be reduced to McClintock's (1965) concept
of critical strain generated a certain micro-structural distance (say, the
process zone) ahead the crack tip.

Our next objective is to relate the energy dissipated within the entire
end zone

R
J=-2 ]0 S(x]) 6uy(x]) (iid)
or, within the process zone only
A A
JN=-21 S(x]) 6uy(x]) (iv)

o

tq the rate of fatigue crack growth, da/dN. The increment of the opening
displacement Suy(xy) is to be interpreted as follows

Suy(x) = [uy ()], gq = [uy(x) ]y (v)

The details concerning evaluation of the quantities 6uy(x]) and JB are pre-
sented in the next section.

The fjna] results are somewhat different from those obtained by the earlier
modeling procedures of Cherepanov (1967) and Wnuk (1971, 1973), based on
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an assumption of constant energy dissipated within the entire end zone, J
= const. Law of fatigue crack propagation valid in the range of near-
threshold loading conditions, as discussed by Radon (1986) and Miller
(1988), will be the subject of a separate report.

MATHEMATICAL MODELING

Mathematical model employed here is compatible with Wnuk's final stretch
criterion of quasi-static crack growth and with the CTOA criterion for
continuing crack extension. The governing equation of a moving subcritical
crack is derived from the requirement that the energy absorbed within the
process zone just prior to fracture js a material property, invariant to
the amount of slow stable cracking and to the geometrical configuration of
cracked specimen. Wnuk (1972, 1974) has shown that setting the quantity

A A

3o =-2 Io S(x‘) 6uy (x]) (1)

to a material constant J = oo 8, Where & denotes the so-called final
stretch* and o is the flow stress, results in the differential equation
defining an R-curve for a non-hardening case

R _ M, - 3 log (4e R/B) (2)
Here, R denotes the length of the plastic zone associated with a quasi-
static crack, R = R(a). Equation (2) is almost jdentical with the equation
derived six years later by Rice and Sorensen in an entirely different way,
cf. Rice and Sorensen (1978). In what follows we shall refer to Eq. (2)
as Wnuk-Rice-Sorensen equation. Recently, this result has been generalized
by Hunsacharoonroj (1987) who incorporated effects of the strain hardening
on the shape of an R-curve. With S(x7) = oo(R/x7)® he obtained

Ry - 2 By 00" (e ()™ (3)
in which « = 1 - 0.5a. Obviously Eq. (3) reduces to Eq. (2) when a
approaches zero. Symbols M; and M; denote the tearing moduli for a
non-hardening and hardening case, respectively. They are evaluated as
certain multiples of the minimum moduli necessary for stable crack growth
to occur, i.e.,

- ) _ 1
H] =k "min =k [2 log (4e Rini/A)]
(4)
N ¢ | (Rini)n Tog" (4B (Rini)l—a]}
2 min 2V A 9 A

Again, for a = 0, we obtain an identity My = Mp. If we denote Rjpj/a for
non-hardening case by po and use the symbol pj for the hardening case, then
these two quantities are related as follows

Py = Py (1-2a) (%)

*The quantity & is proportional to the CTOA or to the Shih's tearing
modulus, Tg.
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For a given nondimensional number k (k must be greater than one), given
ductility parameter po = (Rini/B)y=o. and for a given strain hardening
index a, the tearing moduli M; and Mp become determined, and equations (2)
and (3) can be integrated numerically in order to generate the predictions
of the fatigue crack growth rate. Following the procedure developed spe-
cifically for the fatigue process we obtain

da _ max’ “c dy

aN = Re ! i (6)

Imin/c M ~ 2 log [4e p yé]
for non-hardening material (& = Rc/Rini = J¢/Jini» ¥ = I3/J¢), and
*

Imax’ e

da _ o> dy

dN — RC | *x M. - 1 o q0q" (e ]—o] (M
.. TgtgF P
min’ “c

for the hardening material. Here, p = pj ¥é* and &* = Re/Ripi = J:/Jini-
The integrals occurring in Eqs. (6) and (7) must be_evaluated numerically.
With lower 1limit Jjni/J¢ replaced by [ré/() - r2)] Ay and upper limit
Imax/J¢ replaced by [1/(1 - r2)] sy, one obtains the rate da/dN as a func-
tion of the parameter r, the r-ratio, and Ay (= AJ/J¢) as primary independ-
ent variable. Figures 1 and 2 show some examples of the relations de-
scribed by Eqs. (6) and (7). A1l these results can be represented in the
general form

d
E% ~ F(r, 8y, Por k, a) (8)

For a given choice of the material parameters

po ~ ductility
k ~ tearing modulus
a ~ strain hardening

the value of the upper plateau of the cyclic R-curve becomes known, and
this value is used to normalize the range of the J-integral (or the resist-
ance parameter R, which within the small scale yielding range is directly
proportional to J-integral). Therefore, 3/J¢ = R/Rc, 83/Jc = AR/R¢, and dR
= Re (dd/J¢) = Redy.

Within certain ranges of the parameter r and the dimensionless range of
the J-integral, Ay, we attempted to curve-fit the data generated through
the numerical integration of Egs. {6) and (7). Here are some examples of
a successful curvefitting process.

Tge normalizing constant for da/dN is the upper plateau of the R-curve,
Rc. The value of this plateau can be computed exactly for the non-
hardening case (a=0)

R. =R

k-1 _ _
e ini (4e po) . p.=R._./8, k = M/"min (9)

[ ini" ™’
and it can be estimated approximately for the hardening case (a#0), namely

*

RY = R}, ; RR(a) [1+ Ag(p)e + By(K)a’)
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2
Aglp) =gy + 3gp P+ 393 P
- - (10)
Bo(k) = b01 + b02 k + b03 k
" - 0. 18
ag = 0-1386462 g, = ~0.2845617 agy = 0001734182
- = 176.642
by, = 293.9287 by, = -436.5258 b

i i i i i tanding
It is noted that the function RRy(a) is defined by thg expression stan

in front of the square bracket in Eq. (12). Introduc1ng a non—g1mens1ona1
quantity & = R¢/Ripj for the non-hardening case, and & = R¢/Ripj for the
hardening case, we can re-write equations (6) and (7) as follows

(da/dN)°=0 Ry F(r, 8Y, pye 0) 8

ni AT

* *
(da/dN)G*O = Rini F(r, 8y, Py a) &

. s : i in Egs. (6)
in which the symbol F is used to denote the integrals occurring in

and (7). The ratios Ripi/Rinj and §"/& are known functions of the harden-
ing index «, namely

*
=1- = 0.6744, B = 15.36945
Rini/Rini 1 2a, A

12)

2
6*/6 - (1 - 2a) 1 -0.5% _1 + .22]702 0+ AO(P0)° + Bo(k)o 1
T-e 44 Aa+Ba

The nondimensional funétion F can be apprpximated throuqh a curve-fitting
technique. Considering two ranges of the independent variable Ay

range I 0.15 <y < 0.65 (low cycle fatigue)
range II 0.65 <y < 0.90 (near critical fatigue)

we obtain the following approximate closed-form expressions

c] (a)
A](PO) B,(r) (ay) . range I
F(r, 8y, py» @) = P — - (13)
AZ(Po) 2 p [C, .
where
2 3 4 T4
A lpg) = aj) + 310py + 31370 * 2140 T T15P0 (14)

2 3 4
+ b]4r + b]Sr

B](r) b]] + b]2r + b]3r

C](o) =c + Coa

= - = .002556864
a, = 2.995075 a1, .1233517 a3

-8
a,, = —-000024687 =8.89 x 10

14 15

o
|
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b” = .9991765 b]2 -4.524384 b]3 = 72.86284

b, = -299.4926 b, = 233.2185
c, = 1.681546 c, = -0.5929918
and
i _ 2 3 4
2(Pg) = 351 + Ay, + Bygp + Apap, + 3p5p, (15)
5 _ 2 3 4
2(r') b2] + bzzr + b23r + b24r + bzsr
Cz(o) = d] + dza + d3a2 + d4a3 + dsaq
a,, = .08563 a,, = --002233073  a,, = -4.88602 x 1078
a,, = 6.362336 x 107 a,5 = -4.3365 x 107°
by, = -999189 b,, = 8.232657 b,y = ~196.7776
by, = 1494.571 b,s = -3632.513
d, = 4.296161 d, = -19.9679] d, = 323.0727
d, = -1416.393 dg = 1830.035

Max imum error in F \.n:thin range I is less than 1.11%, while for the range
!I the maximum error is less than 4%. As we can see, the low cycle fatigue
is represented by a power law, cf. the first equation in (13), while the

near-critical fatigue process is described by an exponential
second equation in (13). Y P feus cf- the

Using Egs. (12) through (15) we can explai
i b gh (15) plain the dependence of the rate

- the range, Ay = 8J/J)c

- R-ratio, r = Kpipn/Kmax
ductility parameter, po

- strain hardening index, a.

Figures 1, 2 and 3 show the results of such parametric studi i
shows the reduction ratio P udies. Figure 4

‘ (da/dN)méo 9,(8y,a), range I

aramy o = Ry (a) (1 - 2a)(87/8) i)
=0 9,(8y,a), range II

9,(8y,a) = D (a) + E;(a) log (ay)
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gz(Ay9°') = Dz(“) + Ez(o) ay

01(0) = .99688 - .15280a

E,(a) = - .00156 - .5040%a - 6505202 (16a)

2

1.599501 - 0.299349a - 37.56253a" - 45.18395a3

Dz(“)

2

-5.763548 + 92.73087a - 402.4988a" + 5]5.3295(:3

Ez(o)

The ratio &%/8 1is defined by the second equation in (12). The reduction
ratio, RRyy, is shown as a function of the strain hardening index, for
fixed values of other pertinent parameters, and at two levels of the non-
dimensional range of J-integral, ay = 0.1 and 0.6 (for Ay > 0.6 there
is hardly any noticeable dependence of the reduction ratio on Ay). The
function RRy(a) was defined previously by Eq. (12), namely,

1-0.5a 1+0.2217a 5 []+Ao(‘°o)° & Bo(k)czl
T-a 140.6744a + 15.36945a (16b)

RRI(a) = (1-2a)

CONCLUSIONS

Low cycle and near-critical fatigue processes were described analytically
by a power law and by an exponential law, respectively, see Egs. (13). The
normalizing constant which multiplies the nondimensional rate of fatigue
crack growth (F) has been represented as a product of three material char-
acteristics (star is removed when o = 0), i.e.,

T R: .
* ini x i M
R, = (a)(5D) 8 (% g— a) an
min
or, with n denoting the strain hardening exponent and with

/b, k =M/M ., a=1/(n+1) (18)

R*
Po = Tini min

a more compact form follows
* *
R, = (8)(pg) (1-20) 8 (py, K, @) (19)

The analysis performed here reveals the numerical values for the &-
parameter, which equals the ratio of the upper plateau to the threshold
level of the cyclic R-curve, see Fig. 5. Ratio R’i"ni/l.\ may be identified
with the ductility parameter, pj ~ l:pf/co. where cpf denotes the plastic
component of strain at failure. The most essential quantity, though, which
js of fundamental nature in the studies of subcritical crack growth, namely
the size of the process zone, A, within the framework of the present
theory remains an "undetermined" parameter. It's specific value, being
outside the range of the continuum mechanics, may be suggested by micro-
structural considerations, or it should be established by an experiment.
In this way, the relations derived here and based on the principles under-
lying mechanics of fracture, can be used as a "bridge" between a continuum
description of material response to fracture and the more fundamental,
microstructural representation of material behavior.
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(RN~ da/dN

(R~ da/dN
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0.15 + ' .
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Ay=AJ/Jc
FIGURE 1. EFFECT OF STRAIN HARDENING (? ON THE RATE OF
FATIGUE CRACK GROWTH, da/dN
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Ay=AJ/Jc

FIGURE 2. EFFECT OF DUCTILITY PARAMETER (p,)
ON THE RATE da/dN
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(da/dN)a,,,o / (da/dN)a=o

(da/dN)y s / (da/dN) =g
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FIGURE 4. REDUCTION OF THE RATE da/dN DUE TO INCREASING
STRAIN HARDENING INDEX, a=1/(1+n)
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FIGURE 3. EFFECT OF r—RATIO ON THE RATE OF
FATIGUE CRACK GROWTH, da/dN
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FIGURE 5. RAT!OlS 6* ) OF THE UPPER PLATEAU OF THE CYCLIC
RESISTANCE CURVE TO ITS INITIATION (THRESHOLD) LEVEL
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