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ABSTRACT

The mechanisms of high temperature creep fracture are known to involve the nucleation,
growth and coalesence of intergranular cavities. Yet these processes are rarely the controlling
factors in creep fracture. The redistributions of stress that occur in a creeping solid are usually
more important. Grain boundary sliding can lead to stress concentrations on grain boundaries
that are perpendicular to the maximum principal stress and this can cause those grain
boundaries to cavitate and fail more quickly than others. This observation has important
implications for creep fracture under multiaxial stresses and can be used to develop a parameter
for predicting creep fracture of metals and alloys under different loading conditions. The
parameter is expected to be valid for alloys that exhibit grain boundary sliding and fail by
cavitation of grain boundaries perpendicular to the maximum principal stress. An analysis
given by Anderson and Rice is used to show that, prior to cavitation, the average tensile stress
on grain boundary facets perpendicular to the maximum principal stress is approximately

<5F=2.24cs1 —0.62(02+c3)

where 6> 6> 03 are the principal stresses. This quantity, called the principal facet stress,
can be used to predict multiaxial creep fracture from uniaxial rupture data for several materials.

KEYWORDS

Creep fracture; grain boundary sliding; facet stresses; multiaxial fracture.

INTRODUCTION

The mechanisms of creep fracture have been studied for more than 30 years. As aresult of
these studies, the various physical processes involved in this failure mode are now reasonably
well understood. Because this subject has been reviewed recently (Argon, Chen and Lau,
1980; Nix, 1983; Cocks and Ashby, 1982; Nix and Gibeling, 1985; Riedel, 1987; Nix,1988)
and because most of the fundamentals are now quite well established, it is not necessary for us
to review these mechanisms in detail. For the purposes of this paper it is sufficient to note that
creep fracture occurs by the formation, growth and coalesence of intergranular cavities. These
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cavities nucleate at stress concentrations created by localized deformation, grow by the
diffusional transport of matter away from the cavities, usually along the adjoining grain
boundaries, and finally coalesce to produce fracture. If the diffusion distance is small
compared to the spacing between cavities, the displacements associated with cavity growth
must be accommodated by creep of the surrounding material. Thus the mechanisms of creep
fracture involve both the nucleation of cavities at stress concentrations and their growth by both
diffusional and creep processes.

This discussion of mechanisms usually relates to a hypothetical situation in which a single
grain boundary is subjected to a constant tensile stress that promotes nucleation and growth of
cavities on the boundary. The effects of stress redistribution associated with grain boundary
sliding and inhomogeneous cavitation, which can be more important, are often ignored. In this
paper we focus our attention on the stress redistribution associated with grain boundary sliding
and the effects of that stress redistribution on creep fracture. We show that significant stress
concentrations can be produced by grain boundary sliding. These stress concentrations help to
explain why cavitation is typically concentrated on those grain boundaries that are
perpendicular to the maximum principal stress. We also show that the stress redistribution
associated with grain boundary sliding can be used to develop a parameter for describing creep
fracture under multiaxiaal stresses. The ideas presented here are described in more detail in
other papers (Nix,1988; Nix, Earthman, Eggeler and Ilschner, 1988).

GRAIN BOUNDARY SLIDING

As noted above, theoretical studies of creep fracture commonly assume a single grain boundary
subjected to a tensile stress that does not change in the course of creep. Such an assumption is
valid for certain experiments involving bicrystals and for polycrystalline solids in which
cavities are present on all of the boundaries. In these cases, cavitation can occur in an
unconstrained manner. But for most cases, a major redistribution of the stress occurs during
creep. In such circumstances, the laws describing cavity growth have to be used in
conjunction with a description of the stress redistribution. In this section of the paper, we
consider the stress redistribution that occurs because of grain boundary sliding.

Grain boundaries slide at high temperatures because atomic diffusion in the boundaries quickly
accommodates any incompatiblities that develop at ledges in the sliding boundaries. Asa
result, the shear stresses that are supported by grain boundaries at low temperatures are
relieved at high temperatures. In the discussion that follows, we assume that the shear stresses
on the sliding boundaries are fully relaxed and that the imposed stress is supported entirely by
the normal stresses on the boundaries. Of course this causes a major redistribution of the
stress to occur within the solid.

First, we consider a two dimensional arrangement of hexagonal grains of the kind shown in
Fig.1. The imposed tensile stress o is assumed to be greater than the transverse stress oT. For
o>or the inclined grain boundaries slide in the direction shown and relieve the shear stresses.
The state of stress in the solid after grain boundary sliding is complex, especially if power law
creep occurs in the grains. Although we are not able to give a complete description of the
stresses in the solid, it is possible to determine the average normal stresses on the grain
boundaries using the principles of statics. For the kind of loading shown in Fig.1, the average
normal stresses on the grain boundaries can be expressed as

=35-1 -
Cp=50"307 and o =0, 1)

Here O is the average normal stress on the transverse boundary facets and &1 is the average
normal stress on the inclined boundaries. We note that for purely uniaxial tension (o1=0) the
inclined boundaries support no stress at all and the applied stress must be supported entirely by
the transverse facets (Op=1.50). This simple model shows why cavitation is strongly
concentrated on the grain boundaries that are perpendicular to the tensile axis (Hayhurst,
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Dimmer and Morrison, 1984; Stanzl, Argon and Tschegg, 1983; Davies, Williams and
Wilshire, 1968; B.J. Cane, 1978; Yu and Nix, 1984). Indeed, for this model no cavitation is
expected on the inclined boundaries. Any cavity that might be nucleated on an inclined
boundary would eventually shrink because the average rormal stress on the boundary is zero.

It is of interest to consider the consequences of cavitation on the transverse facets using this
simple two dimensional model. If the cavitation occurs at the same rate on all of the transverse
facets, then the facet stress rather than the applied stress should be used to calculate the rate of
cavity growth and the fracture time. When the cavities interlink simultaneously on all of the
facets, fracture occurs immediately because the applied stress can no longer be supported. The
separation of the grains is accommodated completely by grain boundary sliding. Of course it is
unrealistic to expect the cavitation to occur at the same rate on all of the transverse facets. The
kinetics of cavitation depend strongly on both the structure (Watanabe, 1983) and composition
(George, Li and Pope, 1987) of the grain boundaries. Thus one can expect the cavitation
processes to occur non-uniformly in the solid. In this case normal stresses will develop on the
inclined boundaries even for uniaxial tension. If a few transverse facets fail at some point in
the solid, the subsequent separation of the grains will be constrained by the surrounding
material. Because the creep rate in this region is bounded by the creep rate of the surroundings
and the shear stresses on the inclined boundaries are zero, it follows that an equal biaxial stress
state will develop in the region. Thus the failure of some of the transverse facets causes tensile
stresses to develop on the inclined boundaries. One can expect that they too would begin to
cavitate and that damage would spread to the entire sample, eventually resulting in fracture.

Figure 1.  Grain boundary sliding and siress redistribution.
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Figure 2. Three dimensional grain structure of Anderson and Rice (1985).

The simple estimate of the average normal stress on the transverse grain boundaries given
above for a two dimensional hexagonal grain structure is not adequate for our purposes. It
does not include multiaxial stresses and it is not based on a three dimensional grain structure.
A better estimate for a three dimensional grzin structure can be made using the results of an
analysis given by Anderson and Rice (1985). They have recently analyzed grain boundary
sliding apd cavitation in a polycrystalline solid composed of a periodic array of identical grains
shaped like the Wigner-Seitz cells. Figure 2 shows the geometry of the grains they considered.
Each grain has 6 square facets and 8 hexagonal facets and all of the edges have the same
length. Two orientations were considered: one with the tensile axis perpendicular to one set of
square facets and one with the tensile axis perpendicular to one set of hexagonal facets.
Anderson and Rice analyzed the average normal stress acting on the transverse grain
boundaries for each of these two orientations. Before cavitation has started to occur but after
grain boundary sliding has relaxed the shear stresses on the boundaries, they show that the
average stress on the transverse facets is

sq _
Op=30,-20; )

for the tensile axis perpendicular to one set of square facets and
hex _ _
op =1670, 0. 670 3)

for the tensile axis perpendicular to one set of hexagonal facets. Here o is the maximum
principal stress and o =0, = 03 is the axisymmetric transverse stress. To obtain the average
stress on the transverse grain boundary for 1 polycrystalline structure we take a weighted
average of the facet stresses given by Eqns.(2) and (3). Since there are 14 facets, of which 6
are square and 8 are hexagonal, we define the average stress on the transverse facets as
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_ 6 sq, 8 _hex
Sr=14%F * 14°F )

Using Egns.(2) and (3) this becomes
(5F=2.24<51—-1.24<5T )

Although the analysis of Anderson and Rice (1985) was for an axisymmetric stress state (G =
03 = OT), We generalize Eqn.(5) by replacing the transverse stress with the mean value of the
two transverse stresses 0, and 63: O = (0 + 63)/2. With this modification, the average
stress on the transverse boundaries is given by

0F=2.2461—0.62(02+0’3) 6)

We note that for a hydrostatic stress state (0 = 0y = 03 = o) the facet stress is simply equal
to op. This corresponds to the limit of no grain boundary sliding and no stress redistribution.
Because the grain boundaries of interest are those perpendicular to the maximum principal
stress, we call the average facet stress on these boundaries the principal facet stress. Below we
show that the principal facet stress, as calculated using Eqn.(6), can be used as a parameter to
predict creep fracture under multiaxial stresses.

It should be emphasized that our estimate of the principal facet stress is expected to be valid
after grain boundary sliding has caused a redistribution of the stresses to occur but before the
transverse grain boundaries have started to cavitate. During the course of creep, cavitation on
the transverse boundaries will lead to additional changes in the facet stresses. Eventually the
transverse facets will fail completely and the stresses will then be supported entirely by the
other boundary facets. Presumably the inclined facets would then begin to cavitate rapidly
leading to final rupture. These complexities, although important to a prediction of the absolute
rupture time, need not be included in the multiaxial creep rupture parameter.

CREEP FRACTURE UNDER MULTIAXIAL STRESSES

Creep fracture has been studied extensively, most commonly under uniaxial stress conditions.
Although uniaxial stress experiments have led to a good understanding of the physical
processes involved, they do not provide sufficient information to predict failure under
multiaxial stress conditions. Bending and torsion are examples of loading that can cause
multiaxial stresses to develop in smooth components. Multiaxial stress states are also produced
at notches and other geometric irregularities, even when the remote loading is purely uniaxial.
Thus, the prediction of creep rupture in engineering structures requires that the multiaxial
stresses be taken into account. The most widely accepted approach to the prediction of creep
fracture under multiaxiaal stresses is that based on continuum damage mechanics. Below we
give a brief review of that approach. This is followed by an alternative approach based on the
principal facet stress described above.

Continuum Mechanics Approach

Hayhurst (1972) and Hayhurst and Leckie (1973,1984) and their colleagues (Hayhurst, Leckie
and Morrison (1978)) have studied the effects of multiaxiality on creep rupture and have used
the principles of damage mechanics (Kachanov, 1958; Robotnov, 1969) to describe these
effects. Here we give a brief review of their results. They show that for a smooth round bar
subjected to uniaxial tension, the rupture lifetime at a given temperature can be expressed as

t;=Mo ¥ @
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where G is the uniaxial stress and M and y are parameters that characterize the evolution of
damage at the temperature in question. The need to consider multiaxial stresses is shown by
considering the creep rupture properties of notched round bars. Hayhurst and Leckie (1973)
pointed out that Eqn.(7) does not correctly predict creep rupture of notched bars even if the
nominal stress in the notch is used in the expression. Instead they have argued that the
equation must be generalized to allow other components of the multiaxial stress state to enter

the equation. They retain the form of Eqn.(7) and write, for a general state of multiaxial stress,

-X
tf=M(acl+|3]1+ylz) 8)
for the rupture time. In this expression and in others in this paper we describe the multiaxial
stress state in terms of the principal stresses, 01 > G, > G3. Here o is the maximum principal
stress, J; is the first stress invariant defined by
Jl=°1+°2+ 03:3(7H )

and J, is the second stress invariant defined by

[NIE

1 2 2 2
1= (0,-09* (5,05 + (95-9)°] =5 a0

The first stress invariant is related to the hydrostatic tension stress through J; = 3 6y and the
second invariant is the von Mises equivalent shear stress or the effective stress, Jp =0e. The
coefficients a, B and 'y describe the relative contributions of the different multiaxial stress
components to the rupture life. The terms M and  again characterize the evolution of damage;
their values are assumed to be independent of stress state. In order for Eqn.(8) to be consistent
with Eqn.(7) for the case of uniaxial tension the coefficients o, B and y must be chosen such
that o + B + vy = 1. Then for the case of uniaxial tension (J = 1, Jp = 0}), Eqn.(8) reduces to
Eqn.(7) (o1 = ©).

Hayhurst and Leckie (1984) have reviewed the multiaxial creep rupture data for several metals
and have found that the maximum principal stress, 01, and the effective stress G, are much
more important than the hydrostatic stress Oy in determining creep rupture. Thus they let B =
0 in Eqn.(8) as an approximation and rewrite the equation as

t,= Moo, +(1-ao] an

where a is a single parameter that describes the relative importance of oy and O, in determining
rupture. It is evident that the parameter o cannot be determined from uniaxial creep rupture
tests alone. Multiaxial tests in which o, and o, can be varied independently are needed to
determine o.. Materials in which the maximum principal stress is most important are called
maximum principal stress materials and are characterized by a=1. Effective stress materials are
characterized by the effective stress, o=0. Most materials fall in between these limits. In such
cases it is necessary to measure the creep fracture properties under various multiaxial stress
states to determine the parameter . In some cases, o is not constant and much more
multiaxial creep rupture data is needed to fully characterize the rupture process. Below we
offer an alternative procedure. We suggest that for many materials the principal facet stress can
be used as a parameter for predicting creep rupture under multiaxial stresses.

The Principal Facet Stress

In this section of the paper we show that the principal facet stress, defined as
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0F=2.24cl—0.62(62+c3) 6)

can be used to describe creep fracture under multiaxial stress conditions for several materials.
Figure 3 shows the creep rupture data of Cane (1982) fora 21/4 Cr - 1 Mo steel. In this
figure, and the ones to follow, three different stress parameters: the effective stress, Oe; the.
maximum principal stress, o1 and the principal facet stress, OF are plotted against the logarithm
of the rupture time. In this way the correlation between the different stress parameters and the
rupture time can be assessed visually. In Fig.3 the datafor uniaxial tension are distinguished
from those for the torsion and notched bar experiments by different symbols. Evidently,
neither the effective stress nor the maximum principal sress correlate well with the time to
rupture for 21/4 Cr - 1 Mo steel. We consider especially the failure of the maximum principal
stress to describe the rupture data. At the same maximum principal stress, the samples tested in
torsion fail sooner than those tested in tension while the notched samples fail later. By
contrast, the principal facet stress, as defined by Eqn.(6), brings all of the creep rupture data
onto a single curve.

The success of the principal facet stress in bringing the data together in Fig.3 suggests that the
data points for torsion and the notched bar experiments are separated from those for uniaxial
tension (at a fixed maximum principal stress) because of different degrees of grain boundary
sliding and stress redistribution. High principal facet sresses are produced in torsion and they
cause the torsion samples to fail sooner than samples subjected to uniaxial tension.
Conversely, small principal facet stresses are developed in the notch, with the consequence that
the notched samples fail later than those subjected to uniaxial tension.

The creep rupture data of Hayhurst, Dimmer and Morrison (1984) for 316 stainless steel are
shown in Figure 4. Again the different stress parameters are plotted against the logarithm of
the rupture time. Here the data for uniaxial tension tests are distinguished from those for the
notched bar tests. The data for two different notch geometries are shown: The British
Standard notch and the Hayhurst circular notch. The rupture times for the notched samples are
greater than those for uniaxial tension at the same maximum principal stress. This represents a
notch strengthening effect. We note that the Hayhurst circular notch is more severe than the
British Standard notch and it causes a greater notch strengthening effect. Here again we find
that the principal facet stress is a correlating parameter that brings all of the data onto a single
curve. Evidently the transverse stresses acting in the notch makes the principal facet stress
smaller than for uniaxial tension This causes the rupture life of the notched bar to be greater
than that for uniaxial tension under the same maximum principal stress.

Stanzl, Argon and Tschegg (1983) have measured the creep rupture life of uncavitated copper
at 500°C in both tension and torsion. Their results are shown in Figure 5. We observe that
samples tested in torsion fail sooner than those tested in tension at the same maximum principal
stress just, as for the 21/4 Cr - 1 Mo steel data discussed above. We find again that the
principal facet stress brings the tension and torsion daia together.

Figure 6 shows the creep rupture data of Dyson and McLean (1977) for Nimonic 80A. We see
that neither the effective stress nor the maximum principal stress alone can characterize the
creep rupture data. Again we find that the principal facet stress correlates well with the time to
rupture.

In the four examples cited here the principal facet stress brings the multiaxial creep rupture data
into coincidence with the uniaxial data. This correlation should prove to be quite useful
because it allows a prediction of the rupture time under multiaxial stresses from uniaxial creep
rupture data. Of course, this prediction requires a knowledge of the multiaxial stress state
imposed.
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Although the principal facet stress is expected to describe multiaxial creep fracture for many
materials, there are some materials for which it fails to bring the uniaxial and multiaxial data
into coincidence. One example is found in the work of Hayhurst, Dimmer and Morrison
(1984) who showed that creep fracture of an aluminum alloy is well characterized by the
effective stress (=0). Although we do not fully understand the failure of the principal facet
stress in this case, we believe it may be related to the failure of this material to exhibit grain
boundary sliding and cavitation of transverse boundaries, as envisioned by the present
approach. It is known that pure aluminum does not cavitate easily. If the aluminum alloy cited
here behaves like pure aluminum, then therupture time would not be expected to correlate with
the principal facet stress.

Stanzl, Argon and Tschegg (1983) have also performed tension and torsion experiments for
precavitated copper specimens. They found that, for a given maximum principal stress, the
time to rupture for precavitated copper under tension and torsion is the same. It follows that the
principal facet stress theory is not valid for this case. Precavitated copper is so brittle that
rupture may occur before the stresses are dequately redistributed by grain boundary sliding.
If so, we would not expect the principal facet stress to be applicable.

Three separate studies of creep fracture of copper under multiaxial stresses have indicated that
failure of this material is characterized completely by the maximum principal stress (Hayhurst,
Dimmer and Morrison, 1984; Henderson, 1979; Needham and Greenwood, 1975). The
possible reasons for the failure of the principal facet stress to predict fracture in these have been
discussed recently by Nix et al. (1988).

In spite of the exceptions mentioned here, the principal facet stress appears to be a useful
parameter for predicting multiaxial creep rpture for many materials. Further experimental
work along these lines will determine how widely the principal facet stress concept can be
applied.
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