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ABSTRACT

The study concerns fatigue crack growth under stationary Gaussian loading
processes. Specific fatigue testing has been performed to verify the vali-
dity of using an equivalent loading to describe the crack growth under

random loading. The statistical moment of mth order (m: exponant of the
PARIS law) of the load distribution was formally introduced as the equiva-
lent load.
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INTRODUCTION

The prediction of fatigque crack growth under random loadina still causes
problems to the engineers faced with the design of mechanical components or
large structures. Whilst numerous experimental and theoretical studies have
been undertaken, the complexity of the subject, the multiplicity of parame-
ters to take into account and the knowledge acquired to date do not allow
the engineer to face all the actual practical problems.

Two typical approaches are currently investigated by researchers:

i) cycle-by-cycle analysis with interaction effects between loads of
different levels,

ii) global analysis using statistical parameters of the load sequence or an
equivalent loading.

The idea of using an equivalent constant amplitude loading to predict the

fatigue life under random loading has been developed in the early sixties
by Paul PARIS (1964). Based on this work, the present study is an attempt
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to validate this type of approach, at least for stationary Gaussian proces-
ses.

In these lines of thought, strictly controlled variable amplitude loading
has been applied in specific fatigue crack growth tests. The experimental
results obtained have been compared to the predictions made by formal
analysis.

EQUIVALENT STRESS INTENSITY RANGE CONCEPT FOR RANDOM LOADING

The use of an equivalent loading is a simple idea which at a first sight
appears quite satisfactory: replace a load history of variable amplitude by
an equivalent loading, such that if applied as a constant amplitude loa-
ding, the same fatigue life is obtained.

On the way, we should note that by continuity such a definition implies
that this equivalent stress is the applied stresse itself in case of a
constant amplitude loading.

Under constant amplitude loading the fatigue crack growth is recognised as
a function of the stress intensity range. The most widely used relationship
is the PARIS law:

da m
an - C.AK 1]

Where da/dN is the crack growth increment per cycle C and m are material
constants and AK is the stress intensity range defined as:

AR = f(a/W) AP a'/? (2]

AP being the stress range, a the crack length and f(a/W) a function which
depends on the geometry of the body and the applied loading.

For random loading, if the interaction effects are omitted, the crack
growth increment corresponding to the application of the stress APi is:

1/2|m
fa, = C [f(a/w) Ap, a ] (3]
Now let us apply to the loading sequence a correction factor a which de-
pends on the crack length such that a transition from a level i to a level
j, anywhere in the sequence, leads to the same value of AK whatever the
crack length.

If the load applied is aAP

a 12 fla /W)

o o
with a = 7

a f(a/wW)

ao being the initial crack, then

AR = aov2 f(a /W) AP - cte.ap
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Equation [3]) can then be written:

sa, = C(Cte.APL) [4)

i
In that way, AK no longer depends on the crack length and this allows us to
make sense of the notion of average crack growth rate during the load se-
quence. Then if the number of times stress A?i occurs is n,., the increase
in crack length is:
te.m

m
c(c ) ini (APi) [51]

The average crack growth rate is obtained by dividing by N the number of
cycles of the sequence:

da

1
dnN ] (sl

The equivalent constant amplitude stressing AP which would produce this
eq
crack growth rate would be:
da ,m m

te
i c(c Apeq (7]

The value of APeq is derived from equations [6] and [7] to yield

1/m
(8]

From equation [8), we note that for a constant amplitude loading
Apeq = AP.

At this stage it is interesting to note that the equivalent constant ampli-

tude loading is the statistical moment of mth order of the random loading

sequence, where m is the slope of the PARIS law under constant amplitude
loading, equation [1].

Of course all the mathematical development zbove is purely formal when m is
not an integer.

In the original work by PARIS (1964) the exponent of the crack propagation
law was 4, therefore he proposed to use the fourth order moment for the
equivalent loading.

In the particular case where m equals 2 the equivalent loading is the
second order of the sequence which is also called the Root Mean Square
(RMS) value of the sequence.

Let us recall that for a finite series of N numbers the Root Mean Square is
given as:
1/2

[10])

=

=

7]
Z| -

M2
>
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The RMS value of the statistical distribution is often used (Barsom, 1976;
Hudson, 1981) without any formal justification but just because it is
widely used as a statistical parameter of random processes.

On the way let us remark on the ambiguity linked to the use of the RMS
value: for a sinusoidal constant amplitude signal, s(t) = S° sin(2n/T)t an

effective value (or true value) is currently used, in acoustics for exam-
ple:

T
s2(t) at - s //3

This value is also called RMS.

For a triangular signal this "RMS" value will be 50/2, and will tend to-

wards zero for impulse signal. Obviously such a definition is not conve-
nient to describe the fatigue phenomenon.

EXPERIMENTAL PROCEDURE

Load Sequence

The load sequence used for the fatigue test has been developed at LBF and
IABG Laboratories (Haibach et al., 13976). It corresponds to a stationary
Gaussian process and the cumulative frequency distribution of level cros-
sings is given in figure 1.

The global characteristics are:

- number of cycles of the sequence or return period: 106 cycles,

- irregqularity factor IR = 0.9,

P
max

- crest factor q = = 4 (RMS defined in eq [(10]).

RMS

The sequence is defined as a succession of numbers between 1 and 32 which
corresponds to the interval [0, Pmaxl' This interval is cut into 31 equal

segments which define 32 values for vhich the signal will present extremes

(relative minima or maxima). Therefore the loads applied to the specimens
are:

- level 1 : P = 0,

- level 32: P = P
max

P
max
- level i : P1 =

(1 - 1).
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Fig. 1. Cumulative frequency distribution of level crossings

The sequence is applied to the testing machine with the transition matrix

technique. Each element uij of the matrix represents the number of transi-
6

tions between level i and level j in the sequence of 10 'ttansitions. In

the following, a cycle is defined as the values of the signal between two

adjacent minima or maxima without these being necessarily of the same

level.

The algorithm for the generation of the signal is such that the same se-
quence can be reproduced as many times as desired.

Material and specimens

The material is structural steel E460. It is quenched by accelerated
cooling after hot rolling and tempering.

The chemical composition and mechanical properties are given in tables 1

and 2.

TABLE 1
Chemical composition of the E460 steel (weight %)

c Mn si ] P Ni Cr

0.17 1.3 0.34 0.001 0.022 0.22 0.22
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TABLE 2
Mechanical properties for the E460 steel

oys (MPa)

UTS (MPa) Elong % KCV - 40°C (J/cmz)

560 665 21.4 103

Two types of specimens, in the LT orientation, have been used: CT specimens
W =80 mm, B = 20 mm for the "AKeq - constant" tests (see next section) and

CCT specimens 2W = 95 mm, B = 10 mm for the "APeq = congstant" tests.

The tests have been carried out on a servo-electrohydraulic machine at the
frequency of 10 Hz using a sine wave form.

FATIGUE BEHAVIOUR
Two types of fatigue tests have been performed.

i) 'Aleq = constant” test, where the load sequence is corrected by a

coefficient a which depends on the crack length as described in the pre-
vious section, following the work by M. TRUCHON (1982).

Using K = ks Y(a/W)
B/W

Where B and W are the thickness and the width of the specimen, a the
crack length, Y(a/W) the weight function, S the load sequence.

If aS is applied instead of S with a = Y(ao/w)/Y(a/w) where ao is the
initial crack length it becomes:

K = EE. Y(a/W) = A2 Y(ao/w) = Cte S

B/W B/W

In that way, K no longer depends on the crack length. This makes sense with
the notion of an average crack growth rate during the load sequence. With
this test, a PARIS law for random loading can be built by point using
several levels of the load sequence.

The crack length was followed optically by the experimenter. The test
frequency was 10 Hz and sequences of about 300 000 cycles were applied to
the specimens without interruptior.

It has been calculated that the statistical parameters of the sequence are
stabilized above 150 000 cycles; thus the sequences of 300 000 cycles can
be considered as representative of the whole sequence, for crack growth
analysis purposes. Seven sequences of about 300 000 cycles were realized
using two CT specimens. The first forty cycles of the sequence are shown in

figure 2. The RRMS ratio is 0.58.
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Fig. 2. First forty cycles of the sequence

The measured data are reported on a diagram a = f(N) in figure 3. The
average crack growth sequence derived from these data are reported in

figure 4 in the form of g% versus AK equivalent. Two definitions of AK

equivalent are used:
= AKRHS using the second order moment of the sequence,

- AKRM using the mth order moment of the sequence (eq [8]) with m = 2.8,
m

exponent of the constant amplitude PARIS law.

The results are compared to the constant amplitude PARIS law at R = 0.7
which is:

da 12

2.8
g4 4 [9
dN (m/c) AE e /ol ]

= 8.392.10

th
From figure 4, it appears that using equation [8] (which represents the m

order moment of a load distribution when m is an integer) as an equivalent
load, the PARIS law, eq [9], correctly describes the crack growth rate
under random loading. For material with an exponent m = 2 the RMS value can
be the correct equivalent but for m > 2 the RMS equivalent will lead to an
underestimated equivalent AK.

AFR-2—H
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Fig. 4. Fatigue crack growth rate versus AKeq
Fig. 3. Crack growth in "Constant AK_ " testing for the two
specimens €q Compared with constant amplitude results
ii) "AP equivalent = constant” tests were performed to verify if the ¢ . TABLE 3
concept of equivalent stress intensity factor can reasonably describe Load level and number of cycles per sequence
the crack growth under a given load sequence. In this case, K depends
1/2
on the stresses but also on the crack length, K = f(a/W).S.a 3 i =
Specimen Pmax of the Sequ. APRMS RRMS APRMm (m 2.8) RRHm
Two tests were conducted on CCT specimens with two different levels of the (N) (N) (N)
load sequence to cover the crack growth range 10.9-10'7 m/c. In a first
test eight sequences were applied. For the second test, twelve sequences 1 154 306 41 513 0.58 44 898 0.54
were applied. Table 3 gives the load level and the number of cycles per
sequence. 2 97 213 26 154 0.58 28 286 0.54
i S
Number of cycles per sequence (10° cycles)
S
{ S1 s2 S} S4 SS SG S7 SB SQ 10 511
i 1 - 3.09 2.92 2.98 2.83 0.95 0.92 0.64 - - -
2 - 6.66 3.85 5 2.35 6.55 5 4 4 4 4
F
1
; AFR-2—H*
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The results given in figure 5 show the experimental crack growth a = f(N)
and the values predicted by the PARIS law, equation [9]), with AK expressed
using the equivalent loading defined in equation ([8].

2a (mm)

50 e x : experimental 7

e

10° 2.10° 3.10° 4.10° 5.10°Nicycles

Fig. 5. Evolution of the crack length versus the number of cycles
in the two APeq = Constant tests. Comparison with the

predicted values

For comparison purposes the equivalent loading has been calculated with the
moment of order 2.8 and 2, the latter giving the RMS value.

The experimental results exhibit crack growth a little bit larger than the
predicted value from the equivalent loading calculation. The use of RMS
value obviously results in poor prediction in the present examples.

In figure 6 are represented the measured crack growth rates versus the
da
crack evolution an "~ f(a) in comparison with the value predicted through
the PARIS law using equivalent K calculation.
The crack growth prediction based on the mth order moment of the long-term

load distribution is acceptable as long as the average crack growth rate is
not too fast.

When the growth rate increases (say above 5.1()_B m/c), the hypotheses made

to write equations [5] to [8] ir previous section are not satisfied and the
average crack growth rate at a given crack length, based on long-term ana-

lysis of the sequence, loses its significance.

Short-term variations in the prcbability density function have then a major

effect. Therefore, crack evolution would not be predicted correctly from
the long term load distribution.
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Fig. 6. Evolution of crack growth rate in the two AP = Constant
tests ed

The model used in this work does not take into account load interaction
effects. An attempt to introduce such effects has been proposed by Mc KEE
and HANDCOCK (1978) and leads to crack growth rate very much less than the
non-interacting model. These authors mention that an important assumption
made in the interacting model is that the loads occur in purely random
gsequences and this is a stringent requirement since real spectra show major
deviations from this condition. These deviations which may be expressed as
short-term variations in the probability density function have a major
effect on the occurrence of load interactions and tend to minimise the
interaction effect in a spectrum, so that the fatigue crack growth rate
approaches its non-interacting value. If, as it is widely believed, load
interactions are important in crack growth, it is also important to quanti-
fy the deviations from random behaviour in real spectra, and in the load
histories used for test purposes.

CONCLUSIONS

Fatigue crack growth under random loading has been analysed using an
equivalent constant amplitude loading.
The equivalent loading can be formally described as the statistical moment

of the mth order of the loading sequence, m being the exponent of the PARIS
law under constant amplitude loading; this being purely formal when m is
not an integer.
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This approach allows a prediction of the crack evolution by using the PARIS
law for constant amplitude loading as long as it does not grow too quickly.
In this case the number of cycles which leads to a significant increment of
growth is not representative of the long-term load distribution and short-

term variations in the probability density function have a major effect.

S —

Obviously, this type of approach cannot be used for any type of spectrum
loading. In aeronautics for example it is known that due to the particula-
rity of the loading, large number of small cycles with periodic overload,
the retardation induced by overloading has a major effect.

Nevertheless, the equivalent loading approach is appropriate to describe g
the crack growth under other types of spectrum loading with less sudden :
changes in stress evolution. This is the case of sea states loading applied :
to offshore structures, in civil engineering structures, earth moving ma-

chinery.
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