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ABSTRACT

Grain boundary sliding is an important mode of deformation at elevated tempera-
tures. It is central to nucleation and growth of grain boundary cavities. Sliding also
often makes a substantial contribution to the total creep strain of the specimen. An
attempt to calculate the stress enhancement factor in a statistical array of grains is
undertaken. Simple geometrical characterization provides reasonable estimate.
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INTRODUCTION

Intergranular cavitation is one of the most important factors contributing to pro-
cesses of creep deformation and fracture of polycrystalline materials (see, for exam-
ple, Evans, 1984). Nucleation of grain boundary cavities requires high concentrations
of normal stresses and is usually observed on boundaries with the normal aligned
with the direction of the local maximum principal stress (Hayhurst, 1983). High
stresses may emerge as the result of grain boundary sliding in the presence of hard
second-phase particles. The particles serve as the stress concentrators while sliding
is the consequence of relatively fast relaxation of intergranular shear stresses at el-
evated temperatures. On the macroscopic level we associate the above microscopic
processes with damage accumulation and conventionally term the phenomenon as
tertiary creep. For a variety of modern structures, tertiary creep may constitute a
substantial part of service time and therefore further understanding of the mechanical

behavior is important.
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Although both grain boundary sliding and cavitation take place at the level of a grain
diameter, it is important to realize that often by the time cavitation becomes active,
sliding has been already fully developed. Under these circumstances the minimum
creep rate or the onset of cavitation is measured in already damaged material. There-
fore macroscopically-observed tertiary creep may constitute the difference between
material with grain boundary sliding and cavitation, and material with sliding only.

The effect of grain boundary sliding on the macroscopic response has been considered
by several authors. Crossman and Ashby (1975) and Gharemani (1980) analyze a
two-dimensional array of hexagonal grains. Chen and Argon (1979) and Riedel (1984)
model sliding boundaries by shear cracks. Beere (1982) calculated the effect of grain
boundary sliding in cubic grains. Anderson and Rice (1985) make an important
observation about the different nature of geometrical constraints in two- and three-
dimensional arrays of grains. Evans (1984) and Riedel (1987) present comprehensive
reviews of up-to-date experimental and theoretical information on the subject.

In this investigation we attempt to establish relationships between the additional com-
pliance caused by grain boundary sliding and a geometrical structure of a statistical
polycrystal.

BACKGROUND

We assume that under uniaxial tension the microscopically homogeneous material
exhibits a power-law relation between the strain rate and the applied stress
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Material constants oo and ¢ denote the plastic deformation resistance and a reference
minimum creep rate at room temperature (Brown and Ashby, 1980); n is a material
exponent varying usually from three to eight. For an isotropic incompressible mate-
rial, the three-dimensional analog of (1) defines the traceless strain rate tensor
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The Mises equivalent stress is
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and the stress deviator is given in terms of the Cauchy stress, T, by
S=T- %(trT) L (4)
The second rank identity tensor is designated by L.

The above constitutive equations characterize the response in the absence of grain
boundary sliding and we consider the entries in (1)-(4) being defined on the micro-
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scopic level. Grain boundary sliding is neither associated with any preferred ori-
entation nor produces opening displacements along the boundaries. Therefore the
tensorial structure of (2)-(4) does not change and the changes are reflected by the

one-dimensional equation
o a\*
= (r2) . (5)

Jo
Some authors “formally” call f the stress enhancement factor. This terminology is
somewhat confusing because there is the actual enhancement of normal stresses on
some of the grain boundaries. We consider the case of fully-developed grain boundary
sliding with completely relaxed shear stresses along the boundaries. In this case the
stress enhancement factor depends upon non-dimensional geometrical parameters and
the material exponent.

The main geometrical measure of a microstructure is a grain size. Langdon’s and
Vastava’s (1982) experiments on aluminum suggest that the creep strain rate increase
due to sliding is approximately inversely proportio-nal to a grain size. Let us examine
this observation. We define the grain diameter d as the arithmetic mean of the
intercepted length from a large number of random penetrations of a grain by a straight
line (we use Underwood, 1970 as the reference on quantitative stereology). We assume
that grains have planar convex faces. The total area of grain-boundaries, A, within
a polycrystal of the volume V and the grain diameter d, is

2V

== (6)
It would be tempting to conclude that for a fixed volume, materials with finer grains
undergo more sliding because of the larger area available for sliding. This is not true
as the stress enhancement factor can only depend upon non-dimensional parameters.
The experimental evidence supporting the phenomenological observation of Langdon
and Vastava (1982) is the presence of the local zccommodation processes such as folds
at the triple point junctions. For finer grains the relative importance of the folds
increases as shown in Fig. 1 (Chang and Grant, 1956). Therefore the dependence of
the stress enhancement factor should also include typical length scales of dislocational
networks or grain boundary diffusion paths besides the grain diameter. We limit our
analysis to cases of the large grains; or to the “small-scale” folds localized at the
triple point junctions. Under this condition the grain diameter does not enter the
formulation.

Anderson and Rice (1985) emphasize the importance of the topological nature of
a microstructure. Grains within a polycrystal form a random complex geometrical
structure. However, it has been observed (Underwood, 1970, page 243) that for a large
variety of materials averaged topological properties remain within fairly tight bounds.
The pentagonal dodecahedron and the truncated octahedron (Fig. 2) bound such
diverse structures as Al-Sn grains, §-brass grains, bubbles and vegetable cells. The
corresponding average number of edges per face are 5.0 and 5.143, number of faces per
grain are 12 and 14, and number of vertices per grain are 20 and 24. The truncated
octahedron is a space-filling polyhedra, while the pentagonal dodecahedron is not
although it is topologically close to a large number of grains. The natural question
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Fig. 1 Accommodating fold formation in Al-20%Zn (Chang and Grant, 1956).

Fig. 2 Truncated octahedron (left) and pentagonal dodecahedron.
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one could ask is whether such a primitive topological bounds can represent basis for
physical modeling of grain boundary sliding in a random array of grains. Let us
view the process of grain boundary sliding as a random distribution of planar convex
surfaces with tangential discontinuities. This approach is exercized in the shear-crack
models. Budiansky and ©’Connell (1976) analyze arrays of random elliptical cracks
and propose a single non-dimensional parameter characterization
1N A2

p=3 z:; e (M
In our case N is the number of grain boundaries of the area A; and the perimeter
L;. The parameter is independent of the grain diameter and depends only upon
the topological properties of a given array. An elementary calculation for a cube,
truncated octahedron, and pentagonal dodecahedron gives

P.:Jube =15 Pto = 0.92 Ppd = 0.92.

The equality (approximate) of the parameters for the two polyhedra is quite remark-
able and may we suggest that for a random array of grains

1
pP= ipto =0.46

It is reasonable to estimate the stress enchancement factor for a random array of
grains as

f = fto-

Cubes are not representative of real grains but may serve as a test whether p is a
good characterization of sliding in “an arbitrary” array.

THE STRESS ENHANCEMENT FACTOR

Beere (1982) reviews various models to calculate the stress enhancement factor and
concludes that 1.1 < f < 2.1. He also gives an approximate analysis for the cubic
array (Fig. 3). In his calculations the stress enhancement is 2.1 for n = 1 and 1.6 for
n = 10.

Anderson and Rice (1985) analyze the array of the truncated octahedra. They employ
a Ritz method using eight coordinate functions. They report f = 1.65 and f = 2.9
for n = 1. The former is calculated for uniaxial tension normal to a family of the
hexagonal faces while the latter is calculated for the square faces. We feel that the
stress enhancement factors are too high and the array should not exhibit that degree
of anisotropy.

We simulate the same problem within the environment of the finite element program
ABAQUS. If the principal directions of the macroscopic strain tensor are normal to the
square faces then it is sufficient to analyze only one eighth of the truncated octahedron
(Fig. 4a). The boundary conditions on the inclined faces are rather complicated, and
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Fig. 4 Octant of truncated octahedron and its finite element model.
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the detailed treatment can be found in Gharemani (1980) and Anderson and Haee
(1985) appendices. The finite element mesh is shown in Fig. Ab. In the conrse of
computations we find f =1.31 for n = 1. The dependence of the stress enhancoment
factor on the material exponent is given on Fig. 3. Further analysis will be reported
elsewhere.

DISCUSSION

Figure 3 displays the dependence of the stress enhancement factors upon the material
exponent for infinite periodic arrays of cubes and truncated octahedra. Both curves
exhibit the same tendency — slow descent with the increasing n. The most remarkable
fact is that forn =1

fcube = 1~90Pcube and fto = 1-92Pto-

The correlation is not that good for n =8, and the corresponding numerical factors
are 1.10 and 1.36. The deterioration may be explained in two ways. The simplest
conclusion is that p by itself is a poor characterization grain boundary sliding in any
array. We prefer more optimistic explanation that that the approximate analysis of
Beere (1982) is less accurate for higher material exponents, n.

The principal conclusions are:

e The dependence of the stress enhancement factor on the grain diameter is pri-
marily determined by networks of dislocations or diffusional processes and not
by the area available for sliding.

e The geometrical constraints in fine-grain materials may be controlled by highly-
localized accommodation in the form of folds. For larger grains we predict the
stress enhancement factor

f=28p

and in a statistical array of grains

f=15
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