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ABSTRACT

The effect of viscosity in the range of 10-101500 ¢S on fatigue crack growth rate, FCGR, (AK
=11 — 25 MPa Ym) in 316 stainless steel tested in silicone oil was investigated and compared
with behavior in air. The four orders of magnitude variation in viscosity had no effect on
FCGR, nor on the crack opening load Py The FCGR and Py, were smaller in the oils than in
air for AK < ~ 18 MPa Vm, but no difference occurred at larger AK values. Microscopy
observations revealed more zig-zags in the crack path for the air environment compared to the
oils; also, cleavage facets on the fracture surface and debris along the crack path occurred in air
but not in the oils. It is concluded that the observed difference between FCGR in the oils
compared to air results mainly from shielding by the oil of the crack tip against chemical
reactions.
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1. INTRODUCTION

Itis well known that the fatigue behavior of metals may be influenced by an oil environment.
Studies (Endo et al., 1972, Endo et al., 1972, Frost, 1964, Polk et al., 1975, Ryder et al.,
1977, Tzou et al., 1983) on several alloys have shown that Stage 1I fatigue crack growth rate
[FCGRY] is lower in oil than in room air. However, when 1 ppm H,S was added to crude oil,
the FCGR in pipeline steels was higher at _stress intensity fractor AK above 20 MPa vm and
lower at AK below 20 MPa Ym, compared to those in air (Vosikovsky, 1976, Vosikovsky et
al., 1982). Hydrogen interaction with freshly exposed crack tip was suggested to be
responsible for the accelerated FCGR at high AK. A corrosion reaction does not however
always accelerate the FCGR. A reduced FCGR in a coal slurry-H, environment compared to
H, alone was reported for tests on 2 1/4 Cr-1 Mo steel (Woods et al., 1980). This was
attributed to the shielding of the crack tip by the corrosion product from the full effects of the
H, gas and to their wedging effect on crack closure. In a similar study on 2 1/4 Cr—1 Mo steel
and 347 stainless steel (McCabe et al., 1980), sulfide corrosion products wedged the crack
open and prevented crack propagation.
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In addition to influencing FCGR by shielding the crack tip from air, oils may exert a
hydrodynamic wedging action (Endo et al., 1972, Endo et al., 1972, Tzou etal., 1985, Tzou
et al., 1985, Way et al., 1935), the degree of which depends on the viscosity. Fluid
penetration into the crack forms a wedge and thereby modifies the effective stress amplitude
experienced by the crack tip, and consequently the FCGR. Tzou et al. (1985) recently
proposed a comprehensive mathematical model for viscosity-induced crack closure, which

treated the kinetics of the fluid penetration into the crack and the hydrodynamics of the oil
pressure distribution within crack. To interpret the complex fatigue crack growth behavior of 2
1/4 Cr-1 Mo steel in the viscous oils (Tzou et al., 1985), this model was successfully

incorporated into the three mutually competitive mechanisms by which viscous oil
environments influence FCGR, namely suppression of corrosive reaction, minimization of
corrosion-product-induced crack closure and the hydrodynamic wedging action.

Of interest in the present study is the effect of oil viscosi
steel, since this alloy along with 2 1/4 Cr—
component in oil refinery and coal conversion

ty on the FCGR in AISI 316 stainless

1 Mo steel is frequently .used as a structural
systems.

2. EXPERIMENTAL

The type 316 stainless steel plate (25.4 mm thickness) em

ployed in this study had the
composition given in Table 1. As-received plate, which wa

s solution-treated, had a mean

Table 1. Chemical composition of 316

stainless steel plate (25.4
mm thick) in wt.%

Cr 17.15 Mo 2.34 S 0.018 C 0.059
Ni 13.40 Si 0.58 Cu 0.10 N 0.032
Mn 1.84 P 0.024 Co 0.02

linear intercept grain size of 90
conforming to ASTM E-399 w.
the as-received plate to give a
conducted at a constant load

um and the tensile properties listed in Table 2. CT specimens,
ith width 35.6 mm and thickness 3.4 mm were machined from
TL crack growth orientation. Fatigue crack growth tests were
amplitude with half sine-wave form (R=0.05) ata frequency of 4

Table 2. Grain size and mechanical properties in monotonic loading
of 316 stainless steel (1),

Grain Size Y.S. (0.2%) T.S. EL(® R.A.
(mm) (MPa) (MPa) (%) (%)
92 245 542 82 (19 mm) 69
Young's Modulus(3) Hardness(4)
(GPa) VHN (Kg/mm2)
193 216
Notes:

(1) As-received material.

(2) Number in parentheses is gage length.

(3) Value of Youngs Modulus was obtained from ASM Metals Handbook,
8th Edition, Vol. | (1961) p. 423.

(4) Vickers microhardness (100 g load)
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Fig. 4. Nature of fatigue crack path in 316 stainless steel in air at AK
of (a) 12.3 MPa vm and (b) 12.7 MPa vm (after etching).
Arrow indicates crack growth direction and AK was calculated
at the middle of the micrograph.

() e

(b,

Fig.5. Nature of fatigue crack pathin 316 stainless steel in silicone oil
(350 cS) at AK of (a) 12.2 MPa vYm and (b) 12.0 MPa Ym

(after etching).

cimen tested in air. Fig. 6 shows the nature of
debris observed along the crack on the specimen cycled in air. The debris was readily wiped
away with a soft paper tissue as shown in Fig. 6-c. The amount of debris along the crack
became less as AK increased. The debris was not present on specimens cycled in the silicone

oils.

slip bands, occur more frequently in the spe

Typical appearance of the fracture surfaces of specimens fatigued in the silicone oils is shown
in Fig. 7, revealing a fan-like pattern and a step-pattern roughly along the crack propagation
direction. The fracture surfaces of specimens cycled in air (Fig. 8) contained a significant
amount of isolated cleavage facets as well as the fan- and step-patterened surface shown in Fig.
7. The mean size of the facets was the order of the grain size. River-patterened parallel bands,
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Fig. 6. Debris along fatigue crack in 316 stainless steel cycled in air at
AK = 10 MP:z Vm (a) immediately following cycling, (b) at
higher magnification and (c) after wiping with tissue paper.

Fig. 7. SEM micrograph of the fracture surface of a specimen tested in
silicone oil (350 cS) with AK = 12 MPa Vm.

presumably resulting from the second-order slip, are clearly seen on the facets. Also to be
noted in Figs. 7 and 8d are flattened areas associated with physical contact (considered to give
surface-roughness-induced closure).

4. DISCUSSION

A four-orders of magnitude variation in the viscosity of the silicone oil had no detectable effect
on the FCGR in type 316 stainless steel. This behavior differs from that reported by Tzou et
al. (1985) for tests on bainitic 2 1/4 Cr—1 Mo steel. They found that FCGR in inert oils
increased in the order of their viscosity and attributed this to viscosity-induced hydrodynamic
wedging action on crack closure. The present crack closure results indicate an essentially
constant level of crack closure in the silicone oils, which ranged in viscosity from 10 to 101,
500 cS. Worthy of mention in this regard is that the hydrodynamic wedging mechanism is
generally regarded less potent compared to other closure sources, such as corrosion debris and
fracture surface roughness, in influencing the FCGR (Tzou et al., 1985).
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Fig. 8. SEM micrographs of the fracture surface of a specimen tested
in air: (a) AK = 9.55 MPa Vm, (b,c) magnified views of A
and B respectively in (2) and (d) AK = 12 MPa Vm.

Crack advances in certain microstructures at low AK take place primarily along a single active
slip system Minakawa et al., 1981, Suresh et al., _198_4). Such single-shear growth,‘whilch
occurs primarily when the maximum plastic zone size is typically smaller than the grain size,
results in: (a) crystallographic or generally faceted fracture features, (b) an irregular surface
morphology and (c) locally mixed Mode I and II crack growth (Carter et al., 1984, Minakawa
et al., 1981, Suresh, 1983, Suresh et al., 1984). This often leads to a mismatch between the
fracture surface asperities during the unloading portion of the fatigue cycle, resulting in a
roughness-induced crack closure. This type of closure is pronounced in coarse-grained, planar
slip material, and enhanced by oxidation of slip steps (Gray III et al., 1983). The present
fatigue crack growth behavior in 316 stainless steel is in accord with these conditions. The
high crack closure level observed in the low AK region in both silicone oil and air thus
appears to be mainly due to fracture surface roughness. Flattened regions in SEM micrographs
in Fig. 7 and 8-c support this view.

Corrosion products formed within growing cracks can also cause crack closure. Moist
atmosphere often forms an oxide film within the crack, which further thickens by fretting
oxidation (Gray III et al., 1983, Tzou et al., 1985). This mechanism is usua!ly spec1ﬁc to the
low AK range, where the oxide thickness is of the order of the crack tip opening displacement.
Therefore, the debris along the crack observed only in the air at the low AK in the present study
may be the result of fretting oxidation. Slightly higher Pop/Pmax in air compared to that in
silicone oils is thus probably due to the oxide-induced closure. Conditions which may be
present at the crack tip for air and oil environments are schematically compared in Fig. 9.

Since the closure load levels were lower in the silicone oils, the effective stress intensity range
AKogr must be higher, which would give a higher FCGR in oils. But in the present tests at low
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