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ABSTRACT

The paper presents a simple micromechanical model for the creep deformation
of polycrystalline vitreous alumina. The inelastic strain is attributed to
the grain boundary sliding and intergranular microcracks.
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INTRODUCTION

4: a popular refractory material ceramics are often exposed to relatively
high stress levels and very high temperatures for prolonged periods of time.
Ltensequently, the components manufactured from ceramics are especially sen-
sitive to creep deformation and creep rupture.

fhe macroscopic (phenomenological) signature of the process known as creep
i+ a gradual increase in deformation at constant stress levels. Thus, the
elastic stretching of the crystalline lattice is responsible only for a
fraction of the total deformation. A variety of distinctly different mecha-
sisms of the irreversible rearrangements of the mesostructure of the solid
such as: grain boundary sliding, grain boundary and bulk diffusion, nuclea-
tion and growth of voids and grain size cracks, etc. are other significant
contributors to the deformation process. The relative significance of a
_particular mechanism varies in dependence of the crystalline structure
 {ehemical composition, grain size, presence of the second phase, precipi-
tes, etc.) and the temperature and stress levels.

BASIC ENERGY DISSIPATION MECHANISM

he present study will focus on the Al203 alumina with a glassy inter-granu-
tar phase exposed to a homologous temperature of 0.5. The specimen will be
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subjected to uniaxial tension of 50 MN/m2. For convenience only the case of
plane strain will be considered. The average grain size is taken to be
50um, while the thickness of the grain boundary phase is only 10nm. Under
these conditions the final failure occurs as a result of the intergranular
creep fracture (Frost and Ashby 1982) .

In the considered case the alumina grains will remain perfectly elastic and,
therefore, responsible primarily for the instantaneous, elastic response of
the specimen. The time- dependent part of the deformation is traceable ini-
tially to the grain boundary sliding (viscous flow of the glassy phase) . As
the deformation increases the stress concentrations attendant to the geome-
trical nonconformity (keying of grains) and glassy phase pile-ups at triple
joints may exceed the rupture strength of the atomic bonds. The nucleating
and growing cracks will provide an additional source of the time-dependent
inelastic strain. As those initially grain size cracks grow they eventually
pecome responsible for the ultimate failure. For simplicity the present
study will concentrate on the more frequent case when the grain size cracks
are only intergranular. In the considered case of uniaxial tension the
ultimate failure occurs as a result of the runaway (unstable) propagation of
the critically oriented and situated crack kinking on the sequent grain
boundaries. Even at failure the microcrack density levels are moderate.

The strategy common to most micromechanical modelling is to isolate the
basic (dominant) energy dissipating mechanism, describe its kinetics and
homogenize the derived equations into relations (1) mapping macrostresses on
macrostrains. In the case considered in this paper the energy is dissipated
on the formation and growth of the crack like defects within the glassy GB
phase. It is also assumed that the ceramic material contains microcracks at
the TJs which are traceable to the manufacturing processes. They are
assumed to be small in comparison with the length of the GB. The geometry
of the TJ is depicted in Fig.l.

Fig.1 The geometry of triple grain junction
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The determination of the inelastic stresses as a function of time (at con-
stant magnitude of the externally applied traction q) requires consideration
of the microcrack propagation along the GBs. The grain boundary sliding
driven by the shear stresses along the slanted GBs increases the wedging
effect and tends to increase the stress concentration at the far end and,
consequently, the crack length itself. In contrast, the diffusion tends to
relax the stress concentrations (Evans, et al. 1980, Raj 1975, Riedel 1987,
etc.). Depending on the rate at which the two processes (GB sliding and
diffusion) develop a crack at the TJ may or may not grow.

Assuming that a TJ crack will grow, after the stress intensity factor
exceeds some threshold value, a crack will generally get arrested as it
reaches the far end TJ. At this point further increase in the GB sliding
caused wedging will be needed to kink the crack on the sequent GB and recom-
mence growth.

The major problem in pursuing this strategy is related to a believable esti-
mate of the stress intensity factor at the tip of the wedge TJ crack. The
actual problem, due to the crystalline anisotropy (Tvergaard and Hutchinson
1987) and the presence of the two inclined GBs is not amenable to a closed
form, analytical solution. For the present purposes it appears reasonable
to start with a rather rough estimate assuming the surrounding material to
be isotropic. Moreover, the influence of the sliding GBs will be assessed
using finite element (FE) computations. Their effect will, subsequently, be
introduced as a correction of a simple formula available in the literature
for a wedged crack under the influence of far field tensile stresses. The
stress concentration at the far end of the crack may in that case be written
(Das, Marcinkowski 1972) as a sum of two terms

K=t (ra)™%+ op (ma)% m

L (1-v2)

representing the contributions of wedging (2B being the crack opening at the
7J) and the far field tensile stresses (o = q cos? B) being the stress nor-
mal to the GB along which the crack propagates - assumed to be constant) .
Also, 2a = fo is the length of the slit. The coefficient C is introduced to
account for the boundary conditions along the sliding GB. Using enhanced
elements the FE computations indicate that C=1 for 2a < f/3, while for 2a=/,
¢ = 0.424. The residual stresses resulting from the thermal amisotropy
(Evans, 1984) will be neglected hereafter.

he wedge opening 2B is, obviously, directly related to the amount of the
shear deformation over the inclined GBs. The viscous glide of the glassy GB
phase is, in general, resisted by the viscosity of the phase, irregularities
of the GB, particles along the GB and keying of the grains (see Raj 1975,
Riedel, 1987). Even though the keying action may have in the case of thin
OB layers a rather significant effect on the sliding (see Tvergaard 1984),
for simplicity, it will be assumed than for a thicker GB phase it can be
neglected. Hence, the displacement discontinuity along the sliding GB can
be directly related to the shear stress associated with the externally
pplied tensile tractions

alt) = v/ 7 (2)

1759



where

kTpk
n = (3)
82(8Dy, + pDy/5) A2

is the friction coefficient depending (see Riedel 1987) on the size and dis-
tance between particles p and A\, GB and volume diffusion coefficients 6Dy,
and D,,, atomic volume Q and temperature T.

From geometry in view of (2) the growth of the wedge with time is

V3 °
B(t) = ——3 ('rc; + 1p) = —3— qt cos 2B (L)
Ln 97

As the wedge opening B(q,B,t) increases with time so does the stress inten-
sity factor (1). The maximum stress at the far end crack tip can be written
from (1) and (4) (integrated with respect to time) as

oy (1) = k(1) x5 (5
where

E 2 1
3 Bqeos 20 , 5 1 . v3s cos?p ®)
16 7 V2a 2

k(t) = kt + k, = C

This stress is simultaneously relaxed by the process of diffusion (see
Evans, et al. 1980). Even though the diffusion is, in general, a rather
slow process the stress paths are in the case of stress concentrations
exceedingly short. Thus, substantial stress relaxations may occur within
very short time intervals. Noting that the stress is a linear function of
time it is possible to use the results from (Evans, et al. 1980) and write

Uy(t) = 0.89 kt (azt)']/6 + 0.7k k, (at)-l/G @
where
G3DpQ
7 s — (8)
2(1-v) «T

It is noted that the stress is actually somewhat larger slightly ahead of
the crack. However, for the value of at considered in this paper this dis-
tance is very small. Hence, it will be assumed that the maximum stress is
at the far end tip of the crack and that (7) represents a reasonably good
estimate of the stresses which may cause the crack growth.
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The crack will commence growing from its initial length 2a = lo when the
maximum stress near the crack tip exceeds the ideal bond strength of the
material (Riedel 1987)

Evg 5
aY(O,t)= ogig=m <—> (9)
b

o

Thus, for given q and

k(B,t) Evg &
FB,t) = ———— - m| — =0 (10)
Vb, b

o o

represents a relation defining the crack length as a function of time. In
{(10) m = 0.52 to 0.86 is a dimensionless number, g the surface energy and
b, the interatomic distance.

The condition (10) leads to a quadratic equation in the square root of the
crack length a

&
cos28 (VZa)2 -2.70 (at) 1/6 _id (2a) + 0.1k C —E_(at)cos =0 (1)
q an

from which it becomes possible to determine a = a(B,t) for a given case of
loading and given material parameters. For typical values of material
parameters (see Riedel 1987, p. 9) the discriminant of the quadratic equa-
tion (11) is always positive even for crack lengths measured inmillimeters.
tonsequently, cracks grow monotonically with time from their initial length
until they reach the far end TJ of the GB.

when the intergranular crack arrives at the far end TJ 2a = [/ it cannot pro-
ceed growth along the same plane due to the superior strength of the grains.
Consideration of the conditions under which a crack will kink onto a tilted
sequent GB requires rather simple transformations of the stress intensity
factors (see Cotterell and Rice 1980, Lawn and Wilshaw 1975 or Stojimirovic,
¢t al. 1987, etc.). After some rather straightforward manipulations the
maximum stress on the plane tilted at an angle of w/3 with respect to the
plane of the crack is derived as

(3 V3 + V2)K (B, 1) -3(1 + V2)Ky(B,1)
Omax (B + 7/3,t) = (12)
8 Vamb,

where K1 and K2 are stress intensity factors of the main crack. Thus, a
erack will kink when strength (9)
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Fi (B,t) = omax B + 7/3,t) - ojq = 0 (13)

STRAINS

Once the crack opening displacements are determined as a function of time,
applied stresses and material parameters they must be summed over all opera-
tive cracks within a representative element mapping on a point of an appro-
priately selected effective continuum.

Denote by A the surface area of a representative volume element (RVE) con-
taining a statistically significant number N of randomly oriented grains,
grain boundaries (GB) and intergranular microcracks. The RVE will be con-
sidered initially isotropic and thereafter statistically homogeneous (in the
sense of an effective medium, see Kunin, 1983).

The macrostrain is then defined as in Horii and Nemat-Nasser (1983), etc. as
1
e=_{edA=(l-fc)ee+fcec (14)

where the three terms on the right-hand side of (14) represent the RVE aver-
age of the elastic strain and strains attributable to the GB sliding and
microcracking, respectively. Also, f. = AC/A is the the surface area den-

sity of the operative cracks. Hence, (14) can be rewritten more explicitly
as

e = _‘.{eedA+l>:{e°dA (15)
~ A A

where the summation is extended over all operative defects.

The strains associated with the displacement discontinuities across the
microcracks are (Horii and Nemat-Nasser 1983, Stojimirovic, et al. 1987)

a
AeC = [ (ben da (16)
ey R

where b (0,S,t) is the crack opening displacement (COD) of a slit with nor-
mal n and length 2a.

The glide u and the COD b depend on the density and orientation of the sur-
rounding defects as well. VMithin the framework of the effective media theo-
ries it will be assumed that the external fields of a particular defect
weakly depend on the exact position of the adjacent defects. This assump-
tion greatly facilitates the computations at the cost of restricting the
applications to the case of low to moderate defect densities.
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The details of a procedure leading to the assembly of the expressions for
the strains attributable to the operative cracks can be found in Stojimiro-
vic, et al. (1987) and Krajcinovic and Stojimirovic (t.a.) and will not be
repeated here due to the constraints on the length of the paper.

ILLUSTRATIVE EXAMPLE

Using the material data from Riedel (1987) p = 10-7 m, A =3 107" m, @ =
4.25 10-2° m, éD, = 8.8 .10"* m*/s, D, = 2.8 10-25 m2/s, one obtains 7 =7
1027 Pa s/m, a = 1.66 10725 and with E = 3.2 10** N/m? (at 0.6 T), it was
possible to determine all necessary parameters and perform numerical compu-
tations. For the case of tensile loading the microcrack concentrations are
rather moderate allowing the use of the Taylor's model (Sumarac and Krajci-
novic, 1987) at a very small loss of accuracy.

Assuming further that the grains are of uniform size (50um) and that their
orientation is the only random variable the computations turn out to be
exceedinglv simple. The results of these computations is presented in
Fig.2.
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Fig.2 Macroscopic stress-strain curve for the case of
uniaxial tension

The inelastic strain vs. time curve plotted in Fig.2 clearly demonstrates
the effectiveness of the proposed strategy. Even more importantly it seems
obvious that the salient aspects of the response may be replicated using
only the physically identifiable and measurable material parameters. This,
naturally, enables a rational optimization of the microstructure for a given
set of circumstances.
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