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ABSTRACT

Upper bounds for the size of the zones in which asymptotic stress and strain fields
dominate the crack tip fields have been estimated for rate independent plastic materials
with low linear or power law hardening and a viscoplastic material with a high
non—dimensional fluidity. Results are presented for steady state crack growth and
stationary cracks in small scale yielding modus I and III loading conditions. It is shown
that especially for steady state crack growth the zone of asymptotic dominance 1is
extremely small also for moderately small hardenings. A conclusion which is drawn is
that the perfectly plastic solutions describe the stress and strain fields at distances from
the crack tip of the order of characteristic material dimensions also for materials with low
hardening or high fluidity.
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INTRODUCTION

For the determination of fracture criteria it is of importance to analyse the stress and
strain fields close to a crack tip. Generally it is possible to derive asymptotic solutions
which depend on some loading parameter and are valid as the distance from the crack tip
approaches zero. Such solutions have been presented for a large class of material models
and loading conditions (Amazigo and Hutchinson, 1977; Chitaley and McClintock, 1971,
Drugan, Rice and Sham, 1982; Hult and McClintock, 1956; Hutchinson, 1968; Ponte
Castaneda, 1987; Rice, 1968; Rice and Rosengren, 1968). These results are of interest
concerning fracture criteria only if it can be shown that the asymptotic solutions describe
the stress and strain fields over distances which are larger than characteristic material
dimensions.

In the present investigation, the size of the zone in which the asymptotic solutions
dominate is estimated. The analysis is limited to rate independent plasticity with low
hardening and viscoplasticity with a large dimensionless fluidity parameter. These
material models closely resemble a perfectly plastic material. It can therefore be expected
that the stress—strain-solution will be similar to a corresponding solution for a perfectly
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plastic material. Nevertheless, the hardening materials and the viscoplastic materials
show contrary to a perfectly plastic material a stress singularity close to the crack tip
(Amazigo and Hutchinson, 1977; Hutchinson, 1968; Ponte Castaneda, 1987; Rice, 1968;
Rice and Rosengren, 1968). Well outside the singular zone, however, the perfectly plastic
solution should give a good approximation to the solution for the considered material
models. These facts have been utilized in the present analysis for the estimation of the
region in which the perfectly plastic solution describes the stress and strain fields. The
limit of this region should be an estimate of an upper limit to the zone in which the
singular asymptotic solution dominates.

The analysis is based on an expansion of the solution in a small parameter which is
related to hardening or fluidity respectively. The zeroth order solution is shown to be the
perfectly plastic solution as can be expected. The criterion for dominance of the zeroth
order solution is based on the size of the first order correction in effective stress. From the
condition that this correction reaches a certain limit, a critical distance from the crack
tip can be determined. Results are presented for stationary and steady state growing
cracks in small scale yielding modus I and III loadings.

GOVERNING EQUATIONS

A stationary or a steady state quasistatically growing crack under small scale yielding
conditions is considered, i. e. the stresses tend to the elastic solutions defined by the
stress intensity factors for large distances in comparison to the size of the plastic zone.

In the analysis it is useful to introduce dimensionless variables. A characteristic length 1
is defined by | = K2/0(2, where oy denotes the tensile yield stress and K the stress
intensity factor (Modus I or III). The size of the plastic zone will be of order . The time
scale is denoted by T. For a growing crack in steady state, the characteristic time T can
be defined as T=I/v, where v denotes the crack tip velocity. In the case of a stationary
crack, the characteristic time must be defined by time constants of the external loading.
If dimensionless variables are introduced as,

i = IIi, t= Tt,
Ei = ’u,ilO()/E EU o (ijg-o/E‘ (1)
O'U = Uoo'i.,

where the unbarred variables z, t, U, € and T denote dimensionless variables, the

1)
equilibrium equations and the constitutive law can be formulated as,
PO — 0
%, T (2)
i . .p
fij = (1+1/)z7ij Vokkéij + Cij’ (3)

where the plastic strains, fIi)j’ for rate independent plasticity are defined by,

= A%y (4)
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and for a viscoplastic material accordingto the Perzyna model [9] by,
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; N_%ij
&y =) 5 (6)

y = 3TE/ 00, (M)

where 7 denotes a fluidity parameter (Perzyna, 1963). In the equations above, a comma
(lenotega differentiation with respect to a z— coordinate and a dot a differentiation with

respect to ¢. The effective stress o, and effective plastic strain ‘Ie) are determined from,

P2 _ 2.

_3 P (8)
% = 2%y €

where sij denotes the dimensionless stress deviator.

The small scale yielding problem is thus defined by eqs.(2,3), eqs.(4,5) or egs.(6,7), the
compatibility equation,

=3 (9)
6= 25+ )
and the boundary conditions which are expressed by traction free crack surfaces and

o.n. = — f.(@)n.g( TH) (10)
) Nore N )

for 7 w,
where fi.(<p) denotes the angle dependence of the linear elastic stress intensity solution, n

a normal vector and ¢g( 7t) an eventual time dependent loading.

PERFECT PLASTICITY

The idea of the present analysis is to treat the effects of hardening or viscoplasticity as
perturbations to the solution for perfect plasticity. Small scale yielding solutions for
perfect plasticity are known for both stationary cracks (Hult and McClintock, 1956; Rice,
1968) and growing cracks (Chitaley and McClintock, 1971; Drugan et al., 1982).

The perfectly plastic solution for a stationary crack in modus III has been derived by
Hult and McClintock, 1956. The effective plastic strain is given by,

fg _ 2(}(-{—1/!.00?!@) (11)
P = 2-~g~cp. (12)

For steady state crack growth in modus III the effective plastic strain and strain rate in
front of the crack tip have been determined by Chitaley and McClintock, 1971,

&P = %(1+u)-[ln(fl;) " %m?(c—lr)], (13)

p
e
eg = 32;(1+u)-lr- 1+ ln(c—lr)], (14)
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where ¢; ~ 1 (Dean and Hutchinson, 1980).

A stationary crack in modus I has an effective plasti in i i
o e ve plastic strain in the central fan field which

C.
P2
=5 (15)
P _o.4..P
€ 296, (16)

where ¢y ~ 0.2 (Rice, 1968).

For a steady state growing crack in modus I the effective plastic in i
field has been derived by Drugan, Rice and Sham, 1982, asr,) ic strain in the centred fan

@ =T 4 7%m(tan(ga/z)/tan(w/g))] -1n(c—§,), (17)
p_2 .
P = 3.%’.%.111(_%), (18)

where ¢ ~ 0.2 (Drugan, Rice and Sham, 1982).

PERTURBATION ANALYSIS
Linear Strain Hardening
For linear strain hardening the relationship between effective stress and plastic strain is
-1+ H.p
Ue—1+-E‘(e. (19)

If the hardening is small, i.e. H/E= § << 1 i
pivaianng] / , the solution can be expressed as an

05= By + 6061 + ...,
(20)

and similarly for the remaining variables. An introduction of eq.(20) into

eqs.(2-5,8-10,19) yields that the zeroth order i ion is gi
G B approximation is given by the perfectly

_ _.p
Tep =1, Tel = ‘e (1)

where cgo is determined from eqs.(11,13,15,17) depending on the loading condition.
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Power Law Hardenin

The effective stress—strain relationship for a power law hardening material is defined by,

| 22
&=d-0, (22)

where 7 is a hardening parameter.

A small hardening is equivalent to a large n. If 1/n = 6§ << 1, the solution can be
expanded in the same manner as in eq.(20). The first order approximation of eq.(22) then
yields,

_ — p
=1, Oo1 = In(1 + CeO)’ (23)

where ‘Ie)O is determined from egs.(11,13,15,17) depending on the loading condition. The

zeroth order solution is as for linear strain hardening defined by the perfectly plastic
solution.

Viscoplasticity

The material law for viscoplasticity accordin% to the Perzyna model is given in eqs.(6,7).
If the dimensionless fluidity parameter 7 is large, then the solution can be expanded in
1/y= 6 << 1. It turns out that the expansion in eq.(20) must be slightly modified in the
viscoplastic case,

0, = 90 o+ 6‘90e1 + wony

(24)
Pp_.P p
€ = €e0 + 6see1 + ...y
where s is a constant. The remaining variables are expanded in a similar way.
An introduction of eq.(24) in eq.(6) yields,
_ 1 .p _ N
Io=1 =@ §jp~ (061) Sijo- (25)

Equation (25) can be identified with the flow rule for a perfectly plastic deformation.
Thus the zeroth order solution is defined by the perfectly plastic solution and

Y )

where égo is given in eqs.(12,14,16,18) depending on the loading condition.

RESULTS

In the previous Section the first order correction to the effective stress was estimated for
different material models. The perfectly plastic solution will be a good approximation if
the correction is small. The condition that the first order correction in effective stress
should be smaller than some tolerance A can be formulated as,
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66061 < A, (27)

where s is equal to 1/N for viscoplasticity and one for rate independent plasticity.

Since To depends on the distance from the crack tip r, through eqgs.(11-18,21,23,26),
eq.(27) implies that a lower bound for r can be determined,

r> 7. (28)
where Fer will vary with material constants, loading conditions and the parameter A.
The critical distances for different loading conditions and material models have been

determined and the results are presented in Tables 1-3.

Table 1. Non-dimensional critical distance for a linear strain hardening
material as a function of hardening H/FE and the tolerance A.

. _2(1+v) H 1
Mode IIT  Stationary R i
- B B ,~1/2
Mode III  Growing re = ¢ exp(Hpg B a)l/?)
"y o H1
Mode I  Stationary Lo = B3 g
Mode I  Growing r = eq-exp((S=E. A)
g o = &3 P57 A))

Table 2. Non—dimensional critical distance for a power law hardening material
as a function of the hardening n and the tolerance A.

Mode III Stationary Lo = 2(¥l-(oxp(nL\) - 1)_1

Mode Il Growi = ¢, -exp({r2= 1/2
ode rowing Tor = €1 exp( [H_U(exp(nA) -7

Mode I Stationary Top = Co-(€xp(ndd) - 1)_1

Mode I  Growing T ™ (’zz-exp(—[s_w(exp(nA) -]
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Table 3. Non—dimensional critical distance for a viscoplastic material as a
function of the fluidity 7 and the tolerance A.

Mode III  Stationary rop = %%K(%)N.!gl
Mode III  Growing T = l%’f-(%)N‘ln(—l—l_*_u'z}.Ncl)

Mode I  Stationary P = 02%- (%)N ‘g

. —~4v 1 1\N 2 N
Mode I  Growing rcr:5272—y"_y'(3) -1n(5%-7'A c3)

The results in Tables 1-3 can be compared to alternative estimates presented in the
literature. Dunayevsky and Achenbach, 1982, determined a critical distance for a linearly
hardening material in steady state modus III crack growth. They found that it was of the
order of O(exp|[-v(E/H)]). As can be observed from Table 1, the E/ H- dependence is in
agreement with the present analysis. Nilsson and Stahle, 1988, have also derived critical
distances for various material models and loading conditions. Their results were based on
the size of the second order term compared to the first order term in the asymptotic
expansion. This is a different criterion compared to the present analysis, where the
primary analysis concerned the dominance of a perfectly plastic solution. The conclusions
by Nilsson and St&hle, 1988, are however in agreement with the results presented here.

As an example a material with a linear strain hardening of H/E = 0.01 and a power law
hardening material with the same initial hardening (n = 101) have been evaluated for
mode I loadings. The tolerance A, see eq.a27), was selected to be 0.1. For the linear
hardening material, the critical distance will be 2-102 and 7- 10°5 for a stationary and a
growing crack respectively. The power law hardening material has for a stationary crack
a critical distance of 8-10°6 and for a growing crack 10-8000. These results indicate that
the perfectly plastic solution should define a sufficiently accurate solution at relevant
distances from the crack tip with the possible exception of a stationary crack in a linearly
hardening material.

CONCLUSIONS

The final results presented in Tables 1-3 show that the asymptotic solutions dominate in
a very small region for small hardenings or high fluidities, especially for steady state
crack growth. It is also observed that the zone is much smaller for a power law hardening
in comparison to a linear hardening. A conclusion which can be drawn is that for
hardenings below a certain limit and for fluidities above some other limit, the asymptotic
solutions have no practical significance. Instead, the perfectly plastic solution determines
the stress and strain fields at distances of the order of characteristic material dimensions.
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