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ABSTRACT

in the present paper, the transient temperature field induced by the
plastic dissipation in an infinite medium with line of discontinuity

investigated. In the author's paper (1988), the closed form of the
solution for the stress and strain field near the tip region under longitu-
dinal shear in the hardening materials have been deduced. Based on these
.olutions, the analytical expresions of the temperature field induced
Ly the plastic dissipation as a heat source are calculated by means

the supperposition method according to the fundamental solution for
the transient temperature field corresponding to unit heat source. The
distribution of the heat source has a singular type and the line of
discontinuity is considered as thermal insulation. Finally, the influences
{ the mechanical and thermal behaviour of the materials on the temperature
#intributions near the tip region are discussed.
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INTRODUCTION

'he  investigation of the temperature fields whithin stationary near
tip region of the line of discontinuity is important for the fracture
wechanics and fracture physics. The examination of energy dissipation
mechanisms near tip region 1is very interest for understanding of the
macroscopic and microscopic process for the damage and fracture phenomena.

‘n the mettallic materials energy is generated during the deformation
and fracture or fatigue process, most of the energy appear in form
i heat.

ih (1965) has considered the temperature field for the steady state

{ the region around the line of the discontinuities in an infinite

487


User
Rettangolo


elastic medium prescribed the remote heat flux. Dreilich and Gross
(1984) has solved the steady heat conduction equation generated by
unit heat source 1in an infinite elastic plate with thermal isolated
curved crack as a fundamental analytical solution. In the paper of
Huang et al (1985), the heat fields of elasticplastic deformation were
calculated by wusing the numerical analysis and a thermovition system
has been used to give a dynamical partern of the temperature fields
of strainless notched plite during tension. Hennig, Michel and Sommer
(1985) have used the finite element technique to solve the coupled
thermomechanical system of field equations in an high-nonlinear equation.
Most of the work for this topic are concentrated in the numerical simula-
tions. Rice and Levy (196¢9) had investigated the temperature elevations
in the plastic zone of a crack, they had deduced the temperature rise
at the tip of a stationary crack and runing crack for the plane strain
by means of the Prandtl slip line model and Dugdale model. The shape
of the plastic zone in two models are approximately. As a first approxima-
tion, the influence of temperature field on the stress and strain can
be neglected.

In this paper, we consider the transient temperature distribution
induced by the plastic dissipation under longitudinal shear near the
line of discontinuity as &« crack or ribbon-like inclusion. An analytical
solution is obtained. In the author's paper (1988) a closed-form solution
for the stress and strain fields near the tip region for a crack or
inclusion under longitudinal shear in the hardening materials has been
deduced. Based on this solution, the plastic dissipation considered
as heat generation coupling in the heat conduction equation is known,
then the temperature field including a singular heat source is calculated
by means of supperposition method. The 1line of the discontinuity is
assumed as thermal isolation. Finally, the influence of the mechanical
and thermal behaviour of the materials on the temperature distribution
near the tip region is distussed.

TRANSIENT HEAT CONDUCTION EQUATION OF LINE OF
DISCONTINUITY COUPLING WITH PLASTIC DISSIPATION

Assuming that, Fourier thermal conduction law is valid with the elastic-
plastic deformation. Accordling to nondimensional notation for the unsteady
case, the heat conduction equation can be written as

* 2 2 *
2T * * Q to (2.1)
- v T = ——
7t 2 cLaf TO
The dimensionless variables as following

X = X/LO, y =y/L°, t = t/to w T = T/To ;
o % . 2 2 *2 2 *2 *2 (2.2)
Q =0Q/Q,, v =0"/0x " + 2%y ", £° =xt /L,

x, y—Cartesian coordinates, to, T0 and Qo reference time, temperature

and heat flux respectively, X =k/(cp), k is the thermal conductive
coeficient. Where t 1is time, f is the density and c is specific heat
of the material. Q 1is the rate of the internal heat generation per

unit volume. Q :ée+.Qp’Qe and Qp are rates of heat generation per volume
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during elastic and plastic deformation respectively. We neglect Qe com—
pared with the plastic dissipation Qp, then we have

Q::Qp =6 Ep (2:3)
6 — Stresses intensity and £ — effective plastic strain rate. For the
power law hardening material

T -z (x/y )" (2.4)

o o

))O — ’CO/G, 'Co — yielding stress for simple shear, N — hardening exponent.
(. — shearing modulus.
For the longitudinal shear

6t - =¥ (2.5)

We use the exact solution near the tip field for the crack and inclusion
problem under longitudinal shear obtained by Yu and Gross (1988)

2 2 n/(n+1)

K + 2(3c052¢+ 1) (2.6)
(r,¢) =Y (——
b 1 \r

(3= (n-1)/(n+1), n=1/N

1/n(n+1)

= Kl-( 2 n__
Q= 8, = gy f + Heoszpr 1 (T .

P P
i is the stress intensity factors of the line of the discontinuiity
under longitudinal shear. According to the Fig.1l, the relation between
¢ and © is given by

.2 .. 2
cos 2P = cose’ 1 _ﬂZ sin“g - fsin”p (2.8)

i i { % are
‘he field quantitiés for the inclusion at a given angle @% are the
..me¢ as the corresponding quantities for a crack at the angle

6= 7+ 6"
for the case of ideal-plastic materials, n—~oo, g—1. P=6 .
Q. = 2KKcos@/(m G r ) (2.9
p
for the stationary crack or flat rigid inclusion, the heat generation
the singularity with the order O(r-f ). We assume the line of the discon-
{inuity is thermal isolation, the boundary condition and the initial

condition can be shown as following

have

2T /2y =0, at y*=0 (2.10)
P st ilx ? s v HE e gzal
o
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§° = at t =0 (2.12)

The mathematical formulation of the heat conduction problem can be
described by the equation (2.1) take into account the equations (2.7)
(2.8) and the boundary conditions (2.10)(2.11), initial condition (2.12).

THE ANALYTICAL SOLUTION FOR THE TRANSIENT
TEMPERATURE FIELDS NEAR THE TIP REGION

Substituding the equation (2.7) into (2.1), the heat conduction equation
can be expressed as

*

~ t
DT *2 2 _* * * o
- TV = P(r P, t )—2 (3.1)
at" E/ V cf’[‘o
P, P, )= —iy, Un(n+1)_K K _ 1 (/32 +2ﬁc052¢+1)1/2 (3.2)

GL Ir *
o r

Carslaw and Jaeger (1963) had described a fundamental solution for
an infinite plane with a point heat source shown in fig.2 and expressing
in nondimensional quantities:

T*(Z*,Z*,t*)= *(23 - 2Q° exp{ _(Zz':_ 5:)(2:':_2:}:)/(4€:2t7\')} (3.3)
43g "t cf Lo t

o

Rewritten the equation (3.3) in the polar-coordinate system shown in
the Fig.2 and use the supperposition method.

The temperature field induced by distributed sources of heat propor-
tional to the plastic work rate in the plastic zone expressed as equation
(3.2) under small scale yielding can be calculated as following

t RS,
% * 1
T (r,6,t) = P(G,‘I’,T)aoexp{———-—*—z——*—-
o Jo J-g, 4 & " (r -1)
[r*2+(;2 - 2r*6' cos (g —\]/)]}6‘ d6 dy *g ’C*
. 4weg (t -T)
QO
ag = T > G‘:.ﬁ/LO (3.4)
° L, T cf

Rp (Y) is the radius of the plastic zone. The shape of the plastic
zone of the line of the discontinuity under longitudinal shear in the
hardening materials is a circle pointed by Rice (1967).

We consider the temperature rise of the tip of the line of the discon-
tinuity, substituding r=0 into the equation (3.4), we have

1 ; t:/ﬁ,‘v' 0e 62 4%
& o (6 - — 6 5
T (o,0,t ) ‘/; OL”P\ ,‘P,'C)ao exp[ lededy -

4 €2 68wt -0
(3.5)
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DISCUSSION

Compare the near tip fields between the crack and inclusion problems
a5 shown in Fig.3 obtained by authors (1988). They have a character
st mirror image about y* axis with the same stress intensity factors
under small scale yielding. Owing to this near tip field, the plastic
work rate, heat generation and the temperature distributions for the
crack and flat rigid inclusion also exist the mirror reflection with
the same stress intensity factor. So we need only to solve one of the
problems of the 1line of the discontinuity (crack or flat inclusion).

As a limiting case, when the Fourier number £ is very small, as
{*~~0. It means no heat conduction effect, and can be explored as adiabatic
case, we have

1 1/n(n+1) ‘o 2 1/2
T G(l+n) “Yo ——5 (B +2fcosg+1) "%

& Tocfr

fk('t)f((‘t)d'c (4.1)
[e]

It can be founded in equation (4.1), the temperature fields of the
near tip region have quite steep temperature gradient in the radial
direction than the circumferential. This result 1is consistent with
the temperature boundary effect as pointed by Yu (1979).

T (",0,07)=

For the perfectly-plastic materials corresponding to hardening exponent
=00, according to equation (2.9)

2K(<)K(=)
P(6,¢y,t) = GL07TG cos ¥y (4.2)
tor the infinite plate with a crack under remote load as 1—7:—(;”, if

the applied load rises linearly with time up to maximum load

K(t) =Tt Wmwa Ax) = ©, < (4.3)

tubstituding (4.2) into (3.5) and integrating in ¥ , consider a very
short time to attain maximumload as a rapid loading cases when
t* becomes small, the temperature rise at the crack tip can be deduced

a8

. 2
* * QVE K
T (0,0,t7 )= —2g— —g—0 L —_max (4.4)
Lo To ¢ v k cp t*
fhe temperature at the crack tip becomes proportional to lﬂ:ax and inversely

proportional to the mechanical behaviour G and loading time Vt* as can
be seen from the equation (4.4). The thermal properties influencing
the temperature at the crack tip appear in the factor (4cpk ). These
results are similar with Rice and levy (1969) deduced from approximate
assumptions about the shape of plastic zone under plane strain.
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CONCLUTION

The analytical solution of the temperature fields generated by the
plastic dissipation for the infinite hardening medium with 1line of
discontinuity wunder longitudinal shear are deduced. The results of
the calculation indicate that for the infinite medium containing a
crack or flat rigid inclusion, the temperature fields exist mirror
reflection character about y* axis. The influence of the mechanical
and thermal behaviour of the materials on the temperature distribution
of the near tip region is discussed.
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