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Abstract

The continuum constitutive modeling for rate-dependent fracture of brittle micro-
cracking solids, which was described in [1], is applied to the finite element analysis of
rapidly propagating macrocracks under dynamic loading. The microcrack toughening
effect is discussed, along with the influence on it of the crack propagation speed, through
the observation of the behavior of the general crack-tip energy-release parameter, T
integral 4, 5].

1 Introduction

The continuum constitutive modeling for rate-dependent fracture of brittle microcrack-
ing solids was presented in [1], which is an extension of the self-consistent modeling
employed by Charalambides and McMeeking [9] to the rate-dependent problem includ-
ing viscoplasticity. This modeling has been applied to the finite element analysis of
static stationary and quasi-statically growing cracks under static loads in (2], in which
the microcrack toughening effect has been discussed by observing the behavior of the
peneral crack-tip energy-release parameter, the T* integral. In the present paper, the
same constitutive modeling is applied to the analysis of rapidly propagating cracks
under dynamic loads, where the strain rate-effect plays a more important role than in
the quasi-static analysis. In the present case also, the microcrack toughening effect is
discussed, with the influence on it of the crack propagation speed, through the obser-
vation of the behavior of the crack-tip energy-release parameter, the T* integral, for
propagating cracks.

In Section 2 some remarks are made on the finite element calculations. In the
following Section 3 a problem previously analyzed by Broberg [6], which deals with
crack propagation with a constant speed in an infinite body under constant tension, is
analyzed as an example of dynamic crack propagation problems. Note that Broberg
|6] deals with linear elastic solids, whereas in the present work unmicrocracking as well
as microcracking type nonlinear materials are treated. This problem is a standard
problem in dynamic fracture mechanics, and an analytical solution is available to check
_ the presently calculated solution for unmicrocracked materials. Emphasis is placed
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on the difference of the solutions for unmicrocracking and microcracking materials.

Especially the T*-integral values are compared to discuss the microcrack toughening
effect. Section 4 contains concluding remarks.

2 Finite Element Calculations

The constitutive modeling proposed in [1] has been implemented in the two-dimensional
explicit elasto-viscoplastic finite element code contained in the finite element textbook
[8], in which four-noded bilirear quadrilateral isoparametric elements are used with
2 X 2 Gaussian quadrature, aad the explicit central difference time integration scheme
is employed with lumped mass matrices.

In the present analysis, the crack-tip energy-release parameter for dynamically prop-
agating cracks, T*-integral [4]is calculated at each loading step by using the following
domain integral expression [5, in order to discuss the microcrack toughening effect:

™ = /r[(W—i-T)nl—t.-(au,-/azl)]dI‘
= - Ae{(W*-T)(aS/BIl)—-o.-,-(au,«/axl)(as/az])}dA

A-
_ /A_A'{B(W +T)/8z1 — 0:i(3ei;/0z1) — piis(Ous/dz1)}S dA (1)

where
Z; : a system of Cartesian coordinates such that z, is along
the crack axis, z; normal to the crack axis
T. : an arbitrary small loop surrounding the crack tip
A: : an area surrcunded by T,
Ty : an arbitrary loop outside T, surrounding the crack tip
A : an area surraunded by T,
t; : the components in the z; direction of the traction
on the contour T,
u; : the components in the z; direction of displacements
ny : the component along the z; direction of a unit outward
normal to the contour I,
W . the total stress-working density per unit volume defined by
2.‘,‘
W = '/0 Oij dE"J‘ (2)
T : the kinetic ¢nergy per unit volume defined by
T = (1/2)pu;u; (3)
S : an arbitrary continuous function such that
S§=1lonT. and S=0 on Iy (4)

T integral has been chosen as a crack-tip parameter, since it is applicable to dynamic
as well as static problems associated with any kind of material nonlinearities, and
unloading. Details of the way to calculate this integral can be referred to in (2]
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If the integrand on the right-hand side of Eq. (1) has a s'ingulanty.of the ogd;r }(1 i{, ;‘l
near the crack tip, for a T', of a circular geometry wit.h radlus.e, the }nt'egran —>e0 o
as (1/€) at T, where dT' = € dd. Thus, 7" remains ﬁmtt.a even in the hrr;f ats 5ds to.zero
the other hand, if the integrand has a weaker singularity thar.l (1/r), hen ° Lo zere
in the limit as € — 0. However, in this latter case T* has a ﬁn'xte \falue wd.en e alu ed
on a finite-sized T,, say of a circular path of a small, but ﬁmt.,e sized ra us €. r:kin
present material model, with micro-cracking near the crac.k-tlp, when .rmcuro-crzr thi
saturates asymptotically close to the crack-tip, the rrfatenal asymptotlttfa 1}{ n;ose he
crack-tip behaves linearly, with reduced elastic mo.dulf. Thus‘, -asymptz})a 1car e}; Close to
the crack tip, the linear elastic type stress and strain smgularltxesﬁ may eﬁp.t umed 0
exist. Thus, the integrand in Eq. (1) is of the order (1/r) and T™* has a finite va
the limit as € — 0.

3 Analysis of Fast Dynamic Crack Propagation

3.1 Problem Description

A model problem of linear elastodynamic crack-propagation as de.ﬁned 1‘;(y lir)o:el;gt iLﬁn,
7] has been chosen as a numerical example for thfe Present dyn.amlf cr;tc h;? hpc fnsists
analysis in a microcracking solid. This problem is 1l!ustrate.d in Fig. 1 w '1c consists
of an infinite body in equilibrium with a uniform axnal. tension, o, = o, ‘p.rltl)rl o rack
extension. At t = 0 a crack begins to grow symr:ilet;'lcally, from an initial leng

4 nt rate 2¢ (each tip moves at speed c).

I‘er?l":: :nc::;;:::al solution gor the Synamic str'ess intensity factor given by Broberg [6]
is dependent on the following two non-dimensional parameters:

CL/CS C/Cs

where ¢, and cs are respectively the longitudinal wave velocity and the shearing wave
velocity, which are given by

¢t =E(1-v)/p(1+v)(1~2v) (5a)

¢t =E/2p(1+V) (5b)

In the present analysis the following values have been chosen:

CL/CS = 2
¢/es = 0.2, 0.4, and 0.6

The material constants assumed are as follows:

Young’s modulus: E = 0.123 x 10'? (N/m?)

isson’s ratio: v = 0.3333 )
g?:ica] stress for microcrack initiation: o, = 0.2 x I?J (N/m?)
Microcracking rate with stress: A = 0.74 x 107° (m*/N)
Saturated value of microcrack density: & = 0.37 .
Viscosity coefficient for microcrack density: 7 = 0.1 x 10 (1/sec)
Density of mass: p = 3110 (kg/m?)
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The crack propagation speed and the wave velocities are as follows:

¢ = 0.077, 0.154 and 0.231 (cm/pusec)
¢ = 0.770 (cm/psec)
cs = 0.385 (cm/pusec)

3.2 Finite Element Results

A sufficiently large rectangular-shaped area is assumed in order to avoid the effect of
reflected wave during the aralyzed time interval. Fig. 1 shows the mesh subdivision of
the upper right quarter of the whole area, whose data is as follows:

Total number of elements = 1296
Total number of nodes = 1369
Total number of degrees of freedom = 2737 (initial value)

. The crack propagation has been simulated by gradually releasing the nodal restrain-
ing force when the crack tip reaches that node. There are some elaborate techniques
to deal with the dynamic crack propagation [4], however, the simplest technique has
been used here, since the primary purpose of the present simulation is to gain a physical
und(-?rstanding of the phenomena including the microcrack toughening. The entire prop-
agation length of 3.08 cm (20-element length) has been analyzed, using the following
numbers of time steps and time increments: 400 steps with At = 0.1usec for c/cs =0.2
200 steps with At = 0.1use: for ¢/e¢s = 0.4, and 200 steps with At = 0.0667;LSEC fO;
C/Cs = 0.8,

The analytical solution for the dynamic stress-intensity factor at the crack-tip, which
propagates with a constant velocity ¢ starting from a zero initial crack length i; given
by (Broberg (6]):

K] = K(C)f(} (6)
where K(c) is tfle so-called velocity factor, and f(, is the so-called static factor, which,
m.this case is: K; = oy/ma(t) where a(t) is the current half crack length, a(t) = ¢t where
¢ is the velocity of crack propagation. Broberg’s [6] solution assumes that the solid is
homogeneous, isotropic, and linearly elastic. In the present problem however, there is
a zone of micro-crack-saturaied material [which behaves linearly elastically] right near
th'e propagating crack-tip; this is surrounded by a zone of tnelastic material in which
Ifucro—cracking is still takingplace, and the third zone of the solid consists once again of
lmea.r elastic isotropic material with constants E, and v, corresponding to the virgin
unmicrocracked material. To understand the effect of microcracking on dynamic crack7
progagation, we compute the dynamic energy-release rate for a pr()pagat:lng crack, for
the imposed K; as in Egs. (7) and (8), corresponding to two sets of elastic ma.t,érial
constants: (i) E,, v, of the uncracked virgin material; and (ii) E, and &, of the micro-
crack saturated material. The energy-release-rates for these cases ar.e labeled here
as Ty and T} respectively. Using the well-known cxpressions for energy-release for
propagating cracks, we write: .

I = [Ar(e, By, vu) K7/(2GL) (7)
T; = [As(e, E_',,D,)K;]/(Zé,) (8)
732

where

Bi(1 - B3)/D(c)
D(c) 4p:8, — (1 + B3)* (9)

B =1— (efer)’; B =1-(c/es)’

Note that A;(c, E,,7,) in Eq. (8) has a negative value for the given material in the
case of ¢/cs > 0.55 when the crack speed c is larger than the Rayleigh wave speed. In
order to avoid this situation, v, and ¢/cy in Eq. (8) are assumed to keep their initial
values as for the unmicrocracking solid in the present calculations. The imposed Kj
corresponds with the given loading under these assumptions. Whichever definition
of A; in Eq. (8) is used for the case of c¢/cs < 0.55, the following discussions are
not influenced. The ”exact” values of T* and T} as computed from Egs. (7) and
(8) are plotted as straight-lines in Fig. 2 for the value of ¢/cs = 0.4. The numerically
computed results, using the algorithm presented in Section 2 of this paper, for T of the
uncracked material is also plotted as T (numerical) in this figure. That T}, (exact) and
T} (numerical) agree well indicates the numerical accuracy of the present finite element
procedure of modeling dynamic crack propagation. The directly computed value T}, for
the microcracking material, using the algorithm presented in Section 2, is also plotted
in Fig. 2. That T, is much smaller than T} at all times indicates the toughening effect,
caused by the material nonhomogeneity, especially the zone of inelastic microcracking
material surrounding the microcrack-saturated material immediately near the crack-
tip, in dynamic crack propagation in the presently considered class of materials.

Fig. 3 indicates the equivalent stress distribution ahead of the propagating crack-tip
at ¢ = 15usec; for the two material models of (i) linear elastic isotropic solid without
microcracking and (ii) with microcracking for the case of far-field 0 = 108 N/m? and
¢/cs = 0.4. considerable reduction in the magnitude of crack-tip stress intensity can
be observed in Fig. 3.

In the following we discuss the quantitative effects of crack-speed, on the microcrack
toughening.

For the applied stress of 0 = 10° N/mm?, and viscosity coefficient n = 10~¢/sec,
the microcrack damage zone as "steady-state” conditions are obtained [at ¢ = 30usec,
Aa = 3.08cm in the case (c/cs) = 0.2; at t = 15usec, Aa = 3.08cm in the case
(¢/es) = 0.4; and at t = 10usec, Aa = 3.08cm in the case (c/cs) = 0.6], are plotted
in Fig. 4 for various values of crack-speed (c/cs). In Fig. 4, each element in the finite
element mesh near the crack tip is assigned a different symbol, depending on the level of
microcracking. It is seen that the microcrack damage zone is the largest for the lowest
crack-velocity, and decreases progressively as the crack-speed increases. Also, lower the
crack-speed, the sooner in time is the level of microcrack saturation reached near the
crack-tip. Also, the velocity factors K (c) in Eq. (6), and A;(c) in Egs. (7, &) are valid
for only linear elastic material behavior near the crack tip. For linear elasticity, /{(c)
decreases with crack-speed, reducing the zero as ¢ = cg, the Raleigh wave speed. In
the presence of a nonlinear inelastic material behavior near the crack-tip, the velocity
{actors for energy-release rate are unknown. In the mic rocracking solid, the nature and
size of the nonlinear zone near the crack-tip depends on the crack-speed itself as seen
from Fig. 4. However, if the "steady-state” values [at Aa = 3.08cm in Fig. 5| of (T,,/Ty)
(normalized values of T*) are compared, it is seen that this ratio decreases as (c/cs)
increases from 0.2 to 0.4, but the ratio T}, /T, increases again as (c/cs) increases from

A[(c)

733



0.4 t0 0.6. For (c/cs) = 0.2, an elastic zone develops near the crack-tip, at steady-state
conditions, as seen from Fig 4. Thus, the near-tip field in the case of (c/cs) = 0.2,
at steady state, can be seen to have an elastic singularity, and that the velocity factor
in Eq. (6) can also be estimated by the near-tip elastic properties. Thus, one may
estimate the energy-release-rite T,,, from the equation:

Tn = [A1(c, By, 2,) K21/ (2G,) (10)
where
Ar= B1[1 - B3]/ (4618, -1+ p3] (11a)
B = 1- (c/er)?; Bz =1~ (c/ecs)? (118)
ci =[E,(1 - 2,)]/p(1+ 5,)(1 - 25,) (11¢)
s = E.,/[2p(1 + 5,)] (11d)
It can easily be calculated for the present case of material properties,
AI(C,ES, Da)
e = T =0.
A1(c,Bu00) 4 for ¢ = 0.2¢g (11€)
G./G, =2.44

By curve fitting the asymptotic stress field in the unmicrocracked case, and in the
microcracked case, at ¢t = 37sec, for (¢/es) = 0.2, it is seen that (Kiip/Ky) =~ 0.5.
Thus, evaluating T}, from Eq. (1 1), and T from Eq. (9), we compute
T
—= =~ 0.86 11
= (11)

This estimation of T, ~ 0.86T; agrees very well with the directly computed result at
steady-state, as shown in Fig. 5.

4 Concluding Remarks

The rapidly propagating cracks, under dynamic loading, in brittle microcracking solids
have been analyzed by the finite element method. The obtained results can be sum-
marized as follows:

(1) The crack tip integral 7" should be used as the parameter describing the severity
of the crack tip in the discussion of the microcrack toughening effect, because it is
applicable to dynamic as well as quasi-static problems including any type of materially
nonlinear behaviors, and unloading.

(2) The microcrack toughening effect exists in dynamic fracture of brittle microc-
racking solids. However, the magnitude of this toughening depends in a rather com-
plicated way on the applied far-field stress, veclocity of crack-propagation, and the
viscosity coefficients in the microcracking evolution equation [3].

(3) The ”velocity factor” in the energy-release-rate expression depends simply on
the material properties near the propagating crack-tip. When microcracking reaches a
saturation near the propagating crack-tip, under specific conditions of applied stress,
velocity of crack-propagation, and 7, the velocity factor is as if for a linear elastic
material with the reduced moduli corresponding to the microcrack-saturated material.
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