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ABSTRACT

Dislocation movement is a randomly changing event and therefore a probabi-
listic approach is essential for the study of crack nucleation. A model of
edge dislocation pile-up is used, and two conditions are investigated:

(1) the absorption of new dislocations is independent from the size of the
existing pile-up, and (2) the absorption is the function of the size. 1In
both cases the results show that the probabilistic approach should be favor-
ed over the conventional deterministic approach. The latter is shown to
underestimate the critical crack nucleus size by about 20 percent, a dif-
ference that in many instances may create dangerous engineering design and
operating conditions.
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INTRODUCTION

Conventional structural design is deterministic: a given load will be car-
ried by a material of well-defined strength at a definite cross section. The
increased demands from designers for improved service performance and also
for cost efficiency requires the application of probabilistic concepts
(Krausz and Krausz, 1982). The consideration of strength and stress as sta-
tistical quantities satisfies both those demands. In addition, the probabi-
listic approach improves the safety of service failure predictions.

This report addresses the conditions that govern crack initiation; it will

be shown that the very start of fracture failure is probabilistic in conse-
quence of the stochastic character of the physical process itself.
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Crack Initiation Model

Failure by fracture occurs in two stages, each controlled by different phy-
sical mechanisms. The first stage is the initiation, nucleation, of cracks;
the second is the growth of these microscopic, or submicroscopic cracks.

The two stages are distinctive, but, as always in this type of physical con-
sideration, no definite boundary can be drawn between the two and no speci-
fic size can be attached to either stage. A pronounced overlap exists be-
tween nucleation and crack growth even at the earliest stage of the nuclea-
tion. Accordingly, the probabilistic behavior of the second stage will also
be discussed to some extent: the presentation thus serves as a substantial
guide to probabilistic single-component damage-tolerant design.

It is now generally accepted that crack nucleation develops by the process
of atomic bond breaking at sites where inherent structural weakness exists,
or where a weakness develops during mechanical loadings. Depending on the
composition and properties of the material, the weakened regions and the
bond breaking processes may be developed by different conditions and mecha-
nisms. From the point of view of this report, these can be well illustrated
by one of the well-known models, the dislocation pile-up mechanism of crack
nucleation, shown in Fig. 1(a) (Nabarro, 1967; Hirth and Lothe, 1968). Other,
more-or-less closely related mechanisms, such as shown in Fig. 1(b) can be
accommodated within the framework of the present study.

The model chosen to represent the crack nucleation process for the analyti-
cal development produces a microcrack when edge dislocations are pushed into
a conglomeration, a pile-up, by the shear stress. By its very existence,
each edge dislocation is already an elementary crack, a unit-cell of a crack,
as shown in Fig. 2. The pile-up, consisting of n dislocations, is then a
submicroscopic crack of about n-times the size of a single dislocation
unit-cell.

4 4 i dddls BARRER
GLIDE PLANE

(a)

CRACK "NUCLEUS

Fig. 1. (a) The Zener model of ctrack nucleation: the dislocation pile-up
at a barrier. (b) The Cottrell model: the dislocation coalescence
on intersecting glide planes provides the barrier.
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Fig. 2. The unit cell of a crack associated with a single edge dislocation.
The figure shows the usual schematic representation of an edge dis-—
location, the dashed circle encloses the wedge-shaped region of
the unit crack-cell.

A crack nucleus then develops, grows, as more and more dislocations are .
pushed into the pile-up. Each time a new one arrives, the nucleus gfowz. Z
one unit. This unit growth may be a crack-size increase'of one atomic vzi
tance, or a length not very different from th?t. The unit growti.maytid

be changing as the nucleation proceeds. Within the context.of tflsa:h di;_
this aspect, the exact growth of the nucleus at'the absorpt}on o e1 .
location, is of no immediate significance and will be identified only by
the instantaneous size of the crack nucleus a.

The Probabilistic Aspect of Nucleation

Dislocation movement is a random process: the velo?ity of a dislocat(lion1
changes at any instant, and the individual diSlOCath?S move.at a ranhom y
distributed velocity. Consequently, the arrival of dislocations to the
pile-up is also a random process.

In any real material of engineering significance an extrémely lar%e :utber
of potential crack nucleation sites are present: Some will grow -as e dom:
than the others because the arrival of dislocations to the sites ls.ran om;
in fact, there is a distribution of nuclei sizes at any instant durl?g o
loading. To apply successfully the probabilistic c?ncept of nuciiat}on
design purposes, this distribution has to be dete?mlned. The following
description provides the machinery for the analysis (Krausz and Krausz,
1984, 1985; Feller, 1970; Kanninen and Popelar, 1985).

Two conditions will be examined:
(1) the absorption of dislocations in the pile-up is independent of
the pile-up size;

(2) the absorption is the function of the pile-up size.

The first condition is a convenient approximation; it is also a good illus-—
tration of the physical concepts and mathematical processing.

Condition 1: arrival rate independent of pile-up size.

Consider that the range of nuclei sizes can have discrete values only. This
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i
s so because at the atomic level, where nucleation occurs, i number of

dislocations at a site produces a nucleus of a definite a size Fig. 3 }
4 . s E
illustrates that as a new dislocation arrives to the nucleus, the crack
grows by Aa. There will be thern a large number of nuclei of size a
i-2°

i .
i-1° ai, ai+l’ etc., as shown in Fig. 4 for an ai sized nucleus. i

As a dislocation arrives to a nucleus of size a

X, t 2 i
i-1 o Xi it grows from ai—l to a size. Similarly, the arrival of

i
a dislocation at i
Xi moves the tip to xi+l: the size grows from a

-1’ the tip moves from

i
i+l 1 1

Dur:il.ng unit time £k dislocations reach each nucleus: k 1is the rate of
arrivals. Each dislocation arrival causes a nucleus to grow one size larger

Conse 1
quently, there will be kpi nuclei that grow from size ai

a er unit time;
+1 P me; also k‘oi-l nuclei will grow from a.i_1 into ai,

Pi 1 a . The net
change, from say a, si fe

, y ;S zed nuclei (in the forward direction only), is net
change = growth into ai—-growth out of a

into size

because at the instant t there are nuclei of size

and the rate of change is

T koi_l—kpi. (1)

(Eq. (1) and the corres
ponding system of differential equati
recognized as the birth-process Markov chain). “ ons can be

Aa - Aa Aa Aa -

Xi-2

Fig. 3.

Xi—) Xi Xi+1 Xit2 --

The schematic representation of the growth of a nucleus. The
nucleus grows by Aa as each new dislocation arrives and moves

from positi
P on Xi—Z to xi—l to )(i to Xi“’l’ etc.

Y

Xi

Fig. 4. The relation between crack-nucleus tip location along the X-axis
and the crack size.
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This equation contains two unknowns, pi—l and pi. However, for each group

of nuclei of the same size one equation of the same type can be written.
There is then n equations for the zero to n sizes and, of course, n nuclei
groups each of the same size: the system of differential equation is then
defined. This system is recognized to represent the Poisson distribution
with the solution
i
p () —LEE exp(- k) @

where i goes from 1 to n. When i 1is very small Eq. (2) can be easily
evaluated with standard Poisson tables. For larger values of i (that is,
for larger nuclei), it is shown in probability theory that the Poisson dis-—
tribution can be well approximated by the binomial distribution (Krausz et
al., 1983; Chandrasekhar, 1943; Krausz and Krausz, 1988; Krausz, 1979):

_ 2
p (6 = 1 exp |- (X -Aake)? | . 3)
|27 (aa) 2kt | 5 20a2kt

In Eq. (3) Aakt 1is the expectation value u , that is, the average crack

nucleus size at time t; and ra(kt) is the variance of nucleus size, that
is, the standard deviation O . Fig. 5 illustrates the nucleus distribution
size in fractional terms pi/pt, where pt is the total number of nuclei.

A simple example will illustrate the considerable scatter, randomness, of
the nucleus size distribution. When 25 dislocations form a nucleus, the
average size given by the expectation value is u=Aakt =25 Aa(because over
a unit time R dislocations move to the nucleus, and over time t there are

25). The standard deviation is U?Aa(ht)iZSAa. The ratio of the two ex—
presses the fractional difference from the average for one standard devia-

tion,

3
o _baCke)® _ 1 _ 4
H Aakt (kt)2 0:2 « “
A
H
<
~
Q
>
o—sf—0

Fig. 5. The crack size distribution, described by Eq. (3). For ease of
representation a continuous distribution density is considered.
In the Figure, pi/pt - fraction of nucleus size; a = nucleus size;

u = expectation value (average nucleus size); o = variance.
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Because about 337 of the nuclei are larger than one standard deviation size,
about 1/3 of the nuclei will be longer than the average by at least 20%Z, a
very significant probabilistic deviation from the average, that is, from the
deterministic nucleus size p.

Condition 2: nucleus-size dependent arrival rate.

We may now consider the distribution of crack nuclei when the dislocations
in the pile-up interact; as, of course, realistically they do so. The rate
constant of the i-th dislocation moving in the direction of the front of
the pile-up is

-?-

AG, (W, )
_ kT s -
Rig =7 exp | ol &
where AG+ W, ) = AGf - W and W,_ =W - W .
if " if if? if ipu

In these equations AGIf(Wif) is the thermal energy needed to activate the

dislocation movement into the pile-up of the i-th sized nucleus. The mecha-
nical energy wif is the function of the work contributed by the applied

force, W, as expressed by the appropriate fracture mechanics form. Because
the scale of the model is small compared to the grain size, a strictly ap-
plied concept of linear elastic fracture mechanics is not valid. On the
scale of the nucleus the proper quantities are interatomic forces and dis-
placements that result from the surrounding large-scale continuum which
lends itself to stress-strain field description. The consideration of the
mechanical energy supplied to the pile-up is further complicated by the
constraint exercised on the grain by the continuous environment in which it
is embedded. The force-displacement state is also affected by the aniso-
tropy of the grain and by the local microstructure. The probabilistic ap-
proach provides the means to overcome some of these complexities. For
instance, in the probabilistic analysis of large number of samples the dif-
ferent orientation and different defect structure of each grain with a
nucleus will appear as averages. It is to be expected that these micro-
structural components will form a normal distribution pattern, as shown by
probability theory. At the presernt time, the mechanical work, W, has to be
related to the stress intensity factor, or other fracture mechanics quanti-
ty: similitude is of obvious importance and help. It is also to be noted
that energy-based fracture mechanics quantities lend themselves best to the
consideration of the thermal energy need — these are more immediately rela-
ted to the scalar character of interatomic energy change which is, so to
say, the final arbiter.

The second term, Wipu, expresses the effect of the pile-up on moving in the

forward direction by one atomic distance. It considers not only immediate-
neighbor interactions, but of those farther away as well. It is, therefore,
a function of the number of dislocations, n: 1in general, an increasing
function of n. The exact functimal relation, while important in quantita-
tive analysis, is not a necessary element for the present purpose. It is
sufficient to regard this as a back stress, or internal stress effect.

Dislocations do move out of the pile-up at the rate determined by the back-

ward activation rate constant, kib’ away from the front. It is defined as
+

AG W

Sy - i e 6)

ib h kT >
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T _ T _ _ .
where AGib(wib) = AG + wib’ and wib W wipu 3

hence, it is possible to approximate the work as wib = wif = Wi.

The growth rate of the i-th sized nucleus (defined by the length of the
pile-up) is

dp
i
i I RO O LI IR e ST 7

There are n of these equations; n is the largest pile-up which scill_
constitutes a nucleus; any size larger than this is a growing crack. ’];hls
system of first order differential equations constitutes a Markov—izhaln
system. When kf is not much different from kb’ it can be described by

the Fokker-Planck equation of energy transfer, a mathematically and physi-
cally eminently satisfactory description

ap/ptz:’i_z_i_ (k. + k) BD_/DL
X

; (8)
it X ' f b

This differential equation is widely studied. It corresponds to the dif-
fusion equation when the dif fusion coefficient is a function of the concen-—
tration p/p,, where Pe is the total number of nuclei (Manning, 1968;

=

Crank, 1970). In infinite and semi-infinite bodies the differential equa-
tion can be solved by the Boltzmann transformation. Substitution of

n= —;— Xt:;‘E leads to the ordinary differential equation
_ 2 E_D/_OE;E_I_Eﬁ(k + ky) dolog | )
" Tdn dn' 2 f dn

where X is the coordinate along the length of the nucleus. Solutions are
available in functional forms as well as numerical methods for a wide vari-
ety of W and boundary conditions. An alternative form

pu

ox
d/e, 3 o/pt

a? a2 Mg * Ry Boloy 2
e 7 ket ) oty 3070, (5%

) (10)

may be also a mathematically convenient expression (Jost, 1960; Bird et al.,
1960). Then the Boltzmann transformation leads to

2
d%e/e, n

. do/p, d (kg + kb) de/e, )2
dn? Zr(kf + k

i = 0 11)
dn d p/ot ( dn (

b
which has experimental advantages; for this the references should be consul-

ted.

In previous studies, it was shown that subcritical crack growth is also pro-
babilistic because thermally activated bond breaking is a stochastic physi-
cal process. This recognition leads to the description of crack size dis-
tribution. The probability demnsity of crack size at time t is

397



2
X - a(k, - Rt
. X ath - el

T exp {-
|2na2(f2f + kb)t[

. (12)
az(kf + kb)t

This probabilistic physical process is always present: it is in the very
nature of crack growth; the Weibull-type distribution, due to non-homoge-
neous material properties, is superimposed on this (Krausz and Krausz,1982).
Similarly, there are two sources of the statistical character of the nuclei
size distributions: (1) the always present physical reason, discussed
here, and (2) the non-homogeneous character of commercial materials. Be-
cause both are probabilistic, strength distribution is observed as the func-
tion of the number of nuclei. The physical nucleus size distribution is

superposed on the statistical flaw-size distribution (Fig. 6); both are
"mearly" binomial.

The present stage of the investigation indicates that the physical probabi-
lity distribution may lead to specimen-size independent strength: this be-
havior was indeed observed, in contradiction to the Weibull-type behavior

(Kingery et al., 1976). The measured behavior is shown in Fig. 7. In these

materials, when not dislocation pile-up controlled, the basic physical pro-
cess is of the same description.

COMMENTS AND SUMMARY

During crack nucleation by dislocation conglomeration, the applied stress
also affects the nucleus directly by straining the atomic bonds ahead of

the nucleus tip, just the same way as the load always affects a crack. This
causes the nucleus to grow exactly on the same physical principles as dur-
ing the crack growth stage proper. At the submicroscopic stage, where
nucleation takes place, the usual linear elastic fracture mechanics concepts
are not valid, and the use of the stress intensity factor for crack growth
analysis cannot be sustained. The use of the crack driving force, G, is

somewhat better justified because it is not a quantity focussed on the

crack tip. Nucleus growth, due to the mechanical work-imposed atomic bond

breaking alone, may be described by the same relation as crack growth dur-
ing the propagation stage,

1% T T & 21 & 1 %

®
o
T

60
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Fig. 6. Distribution of specimen strength containing N cracks, due to non-—
homogeneous materials structure.
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Eq.(13) is an empirical relation. It was shown in a series of papers that
the growth process itself is probabilistic and is described by a function of
the type (Krausz and Krausz, 1982, 1984, 1985)

+

AG - W(G)
v «exp |- e | (14)
where AG+ is the energy needed for atomic bond breaking; W(G) 1is the
mechanical work contributed by the crack driving force, W «G; T is the
temperature in degree Kelvin; and k 1is the Boltzmann constant

(k = 1.38 x 107237 . Eq. (14) is a theoretical, rigorously derived
expression, while Eq. (13), being an empirical relation, has its serious
limitations. For some design purposes, however, the simplicity of the empi-
rical expression can be of sufficient advantage to compensate for the
dangers inherent in the use of non-theoretical relations in damage tolerant
design. Eq. (14) is itself also a probabilistic relation.

Whichever of the two is selected, the well-known expression for the crack
driving force can be used

G = Y202a (15)

where Y is a geometrical and loading type dependent function, o is the
far-field normal stress, and a is the crack size.

Eqs. (3) and (13), or (l4) and (15) constitute a full description of the
probabilistic crack nucleation process for the fracture safety design of a
single component. The crack grovth stage, also in probabilistic context,
was discussed in previous publications (Krausz and Krausz, 1982, 1984, 1985;
Krausz et al., 1983; Krausz, 1979) .

It is clear from the analysis that the important nuclei are not the deter-—
ministic ones: these are of average size only; the important nuclei, the
ones that lead to cracks that may grow and eventually fracture are larger
than average. Their size and distribution density can be determined by
probabilistic analysis only.
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