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ABSTRACT

A cylindrical crack in an infinite elastic body is analyzed. The solution procedure reduces
the equations of elasticity to two coupled singular integral equations for the Mode I and
Mode II dislocation densities which are integrated using numerical quadrature. The stress
intensity factors are calculated directly from the dislocation densities. A parameter study
reveals that the energy release rate is approximately proportional to the crack radius for
crack lengths greater than four times the radius. This result agrees with a simplified model
developed using Lame’s solution for a pressurized cylinder.
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INTRODUCTION

The initiation and growth of a cylindrically shaped crack (see Fig. 1) is an important mode
of failure for structures made of dissimilar materials with an interface of cylindrical shape.
Examples of these are ceramic coatings for high temperature applications(Andersson 1983),
glass-to-metal seals in microelectronic components (Kokini and Perkins 1984a), and the
fiber/matrix interaction in composite materials (Budiansky er. al. 1986). In the first two
cases, the structure is subjected to a thermal load that results in tensile radial stresses
causing separation and cylindrically shaped cracking, (Kokini and Perkins 1984b). Fiber
debonding in unidirectional composites is sometimes induced by interfacial stress
concentrations caused by previous damage such as matrix cracking (Budiansky er. al. 1986)
or broken fibers (Goree and Gross 1980). Additionally, (Atkinson, et al 1982) used the
cylindrical crack as a model for the fiber pull out test.

The objective of this paper is the accurate analysis of the effect of the cylindrical crack
shape on the crack tip stress intensity factors. To this end an infinite elastic body containing
a cylindrical crack subjected to internal pressure is analyzed. The solution procedure
reduces the elasticity boundary value problem to a system of integral equations whose
solution is the dislocation densities. The integral equations are integrated using numerical
quadrature and the Mode I and Mode II stress intensity factors are calculated directly from
the dislocation densities. After this portion of the research was completed and the paper
was submitted, the authors discovered that Erdogan and Ozbek (1969) and Ozbek and
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Erdogan (1969) used dislocations to analyze the cylindrical interface crack. Also, Kasano et
al (1984, 1986) used integral equations to analyze a cylindrical crack in a transversely
isotropic body as well as a cylindrical interface crack in an anisotropic body. In this paper
strain energy release rates are calculaed, using dislocations, and compared to results
developed by a simple model based on Lame’s solution for a pressurized cylinder.

Figure 1. Cylindrical crack and coordinate system

PROBLEM FORMULATION

Love’s Stress Function

The problem to be considered is one of torsionless axisymmetry. It is convenient to use
Love’s stress function ¢. The stresses and displacements are written in terms of ¢ as

o = Lwv2o- 22 0 = L (vw2e- 122, 12)
aai-’ or? 2% ag 2r arazq)
o, = 52—[(2—v)V2¢ - 571, Gy, = 3[(1—v>v o —2 —52—2] 3.4
2Gu = - a:az S 26w = 2(1-v)V2¢ - %z% (5,6)
where
Vivip=0 N

ensures that equilibrium is satisfied, ¢ represents the components of stress in cylindrical
coordinates ( Fig. 1), u is the radial (r) displacement, w 1s the §x1al (z) displacement, G is the
shear modulus, and v is Poisson’s ratio. The angular (0) displacement, G,p, and Og, are

identically zero.
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Equation (7) is integrated through the use of the Fourier Transform pair

1 1 "j‘ ~ ;
o(r;E)e %% dz 8.9

2n 27 e

where i = V—1. Applying the Fourier Transform to Eqn. (7) and integrating the resulting

differential equation yields

E20(r;E) = A©) o (Er) + B(E)ErT 1 (§r) + C(E)Ko(&r) + D (B)ErK 1 (§r) QL)
where I and K are Modified Bessel functions of the first and second kind respectively,
(Abramowitz and Stegun 1968). It is noted that for our purposes we define
[o(=Er)=1oEr), 11(=Er)=—11(&r), Ko(-&r)=Ko(&r), and K,(= r)=—K(&r). The
tran;fqrm parameters A (§), B(};), C(&), and D(E) are chosen to satisfy the boundary
conditions.

&(r 6) = _[ q)(r,z)eiizdz, o(r,z) =

Before the inverse transform representations for the stresses and displacements are written it
is convenient to separate the cracked body (Fig. 1) into region 1 for r<R and region 2 for
r>R. To ensure that the stresses and displacements are bounded as r—0 and r—ee, C(&)
and D () are set to zero in region 1 and A(&) and B(E) are set to zero in region 2.
Substitution of Eqn. 10 into Eqn. 9 allows the stresses and displacements to be written as

oo

26u’ = ;n J1An @0+ BEToEnle 5 d (an
26w! = ;n :{Mo(gr) + B[4A(1-V)I o(Er) + Erl  (Er)]Je 5 dE (12)
ol = ‘2‘n ig{,;[ I‘S') — oM - BIA-2W o(&r) + Er[, ENJe " FdE  (13)
ol = ;n l@m Ilgr) +B(1-2V) o (Er)le % at (14)
o} = _2; iﬁ-{uo(gr) + B[22~V oEr) + &1 ()] Je " dE (15)
o= ;n 1@[“1(@) + B[2(1-0) 1 &) + Erlo(Er)]Je 5 dE 16
2Gu? = ;‘n l[CK1(§') +DErK o(Er)le 5 dE an
26w = ;n LCKO(ér) ~ D[4(1-V)K o(&r) — ErK 1 (Er) e " dE s
o2 = \é;l&{a K‘S') +Ko(En)] + DIErK (Er) — (1-2v)K o(Er))Je "#dE (19)
8= ;.ln: ii[c Klg(fr) +D(1-2v)K g (§r))le "%k, (20)
ol \/‘E';?_za{cxo@n + DI20-VK &) + ErK 1 )] Je St @1
0% = \/%iﬁFCK 1(&r) + D[2(1-V)K 1 (&r) - ErK o(Er))Je 5 dE (22)

where A, B, C, and D are as yet unknown functions of & and the superscripts refer to the
different regions-of the body.
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Boundary Conditions

An infinite elastic body contains a cylindrically shaped crack of radius R and length 2a. The
crack is loaded by internal pressure of magnitude p. The appropriate boundary conditions
are given next along with conditions forcontinuity between regions 1 and 2:

cl(R,z)=c*(R,2), oL(R,z)=06%(R,z), —eo<z<oo (23,24)
ol(R.2)=-p, 6L (R,2)=0, —a<z<a (25,26)
ul(R,z)=u*R,2), vl (R,z)=wi(R,2), Izl >a (27,28)

The continuity of stresses, Eqns. (23-24), allow A and B to be written in terms of C and D.
The continuity of displacements, Eqns. (27-28), is satisfied by writing the jump in the
displacement across the crack in terms of dislocation densities as

—5—2 u2R,z)—u'(R,2)] =B (z) H(a—1z 1) (29)

—aa—z wW2(R,z) —w'(R,2)| =Bo(z) H(a—1z |) (30)

where H is the Heaviside step function equal to unity for positive argument and zero for
negative argument. Next C and D are vritten in terms of the Fourier Transforms of B and
B,. The resulting forms of C and D are substituted into the crack face traction conditions,
Eqns. (25-26), yielding, after some manipulation:

2 By(s)ds 4 T =

[ ROE B L Gods - [Ba@atsnds == VP acrca @)
J sz < Za G
4 By(s)ds ° T

- [F—+ [Bi6)La(s.2ds - [Ba()Ls(5,2)ds=0, —asz<a (32)

where the kernels L, L,, and L, are given in the APPENDIX. The continuity of
displacements outside the crack requires that the net dislocation is zero giving

[Bi(s)ds=0,  [Ba(s)ds =0 (33,34)

-a

Numerical Quadrature

The problem is reduced to inverting the system of integral equations , Eqns. (31-34), for the
unknown dislocation densities. The kernels are continuous for —a <s <a and —a <z <a so
that the square root singularity at z=la | in the dislocation densities is determined by the
first term in Eqns. (31-32). This singularity is the same as that for the dislocation densities
relevant to a straight plane strain crack. Following Gerasoulis (1982), Eqns. (31-34) are
nondimensionalized by

s=as,z=az (35)

sx(l—v) B _ 2n(-v) . B2®
B(as) = n—((l;—\ﬂﬂ—]—v Ba(as) = M’G v) P 2
Vi-52 V1 -52
The equations are integrated by approximating B | and B as piecewise quadratic. Once B
and B, are calculated, the Mode I and Mode II stress intensity factors are calculated through

(36,37)
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K;(a) = lim \2n(z—a) o,(R,2) =p\nanB (1) (38)
z—a*
Ky(a) = lim.\/21t(z —a)6,,(R,z) =p\manB,(1) (39)
zZ—a
NUMERICAL RESULTS

T'he stress intensity factors normalized by K; for a plane strain crack of length 2a subjected
to internal pressure p, K;=p \7131-, are shown in Fig. 2 as a function of R/a and v. The value
for K[ is the same for each crack tip and Kj;(a) = —Kjj(—a). For large R /a, K; approaches K;
and Kj; goes to zero. As the radius decreases K; reduces relative to its value for a plane
strain crack of the same length and K first increases then decreases in absolute value. Note
that for v=.25 and v=.5 the sign of Kj(a) is negative. This sign suggests that if the crack
were to grow it would tend to grow away from its center. That is, any crack growth would
not be self similar and the crack would grow at an angle into region 2.

Iiig. 2 also shows K; and Kj; normalized by VrR . For large values of a/R, K;/p ViR and
K;/[pNTR become approximately horizontal lines. This fact is discussed further in the
DISCUSSION section.

DISCUSSION
Next, an approximate calculation of the energy release rate for plane strain,
2
Gm E" (K} +Kh) (40)

is outlined. The approximate solution is based on Lame’s solution for a pressurized cylinder.
‘The approximate calculation ignores the strain energy caused by deformation in the regions
Iz | >a and is a more appropriate approximation for large values of a/R.

Region 1, r <R is treated as a solid cylinder of length 2a and radius R subjected to external
pressure

c,(R,z)=-p, 6,,(R,2)=0 (41,42)
The ends of the cylinder are constrained leading to plane strain conditions. The strain energy
1
Uu=< &c,-,-a,-j av (43)
is calculated as
2
U' = 27taR2%— [ (1-v)-2v2 ] (44)

Region 2 is treated as an infinite elastic body containing a circular hole of radius R,
subjected to internal pressure p. Again plane strain assumptions lead to

2
U? = 2naR? p? (14v) (45)
The total strain energy in the body is

2
U=U'"+U?=4naR? ”? (1-v?) (46)

The strain energy release rate is defined as G = —aa% where A is the area of the crack faces.
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Fig. 2. Mode I and Mode 11 stress intensity factors.
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The assumption of self similar growth (R constant ) leads to
a-v»h »
G= p*R 47
E
The energy release for plane strain crack of length 2a in an infinite body subjected to
internal pressure p is
(1-v?)
E

Fquations (40,47,48) for G are shown in Fig. 3. The Lame approximation works well for
a/R >2. It is striking to note that G is independent of a for a/R > 2. For comparison,
results from Kasano et al (1984) using Eqn. (40) are also given in Fig. 3.

G= p’na (48)

CONCLUSION

The fundamental problem of a cylindrical crack subjected to internal pressure is analyzed.
It is found that the cylindrical geometry reduces the Mode I stress intensity factor relative to
that for a plane strain crack of the same length. In addition, the cylindrical geometry
induces a Mode II stress intensity factor causing mixed-mode deformation of the crack
faces. For crack lengths larger than four times the crack radius, the energy release rate
becomes proportional to the crack radius. An approximate model based on Lame’s
pressurized cylinder solution verified this result.

The solution presented here for internal crack pressure can be used with the superposition
principle to calculate stress intensity factors for additional loadings. Alternative crack face
loadings such as nonuniform pressure and shear tractions, G,,, can easily be incorporated in
the analysis.

25~
2
iK=Ki
GE s ;v
.'%5 cylindrical crack
(1-vH)p*R ] —"
1 S +
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| | | | ]
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a/R

Fig. 3. Comparison of energy release rates, the + are from Kasano et al (1984)

for v=0.3.
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APPENDIX

The continuous portion of the integral equation kernels are given by

L(s,2) =2 [{[26R (K111 = Kol ) +(3-2V)(K ol | =K 110) + E?R*(K oIy =K 110)

0
+ 30V e+ —;—}sinlé(s . (Al)
Ly(s,2) = 2[[ER (Kol 1 =K 110) + E'R2 (K111 = Kol o) + 2(1-V)K 11 1]
_ x cos|E(s — z)|dE (A2)
L3(5,2) =2 [(E2R*(K 1o ~ Kol 1) - 5JsinlEGs — 2)1d& (A3)
0

where Io=1g(ER), I, =1,(ER), Ko =Ko(ER), and K| =K (ER). These integrals are
evaluated numerically using Filon’s Method (Abramowitz and Stegun 1972).
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