The Influence of Crack Tip Plasticity in
Dynamic Fracture

L. B. FREUND
Division of Engineering, Brown University, Providence,
RI 02912, USA

ABSTRACT

Dynamic fracture resistance of structural materials is commonly described in terms of the
y~lationship between a measure of the crack driving force and the crack tip speed. In this
article, analytical modelling directed toward establishing a basis for such a relationship in
terms of crack tip plastic fields is described. The discussion is based mainly on analysis of
steady crack growth through an elastic-plastic or elastic-viscoplastic material under small
«enle yielding conditions. Some observations on crack arrest, fracture mode transition
and dynamic ductile hole growth are included in the discussion.
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INTRODUCTION

Consider growth of a crack in an elastic-plastic material under conditions that are es-
sentially two dimensional. The process depends on the configuration of the body in
which the crack grows and on the details of the applied loading, in general, as well as on
the properties of the material. However, if the region of active plastic flow is confined
to the crack tip region, and if the elastic fields surrounding the active plastic zone are
adequately described in terms of an elastic stress intensity factor, then it is commonly
assumed that the prevailing stress intensity factor controls the crack tip inelastic pro-
cess. This viewpoint mimics the small-scale-yielding hypothesis of elastic-plastic fracture
mechanics but the basis for it in the study of rapid crack growth is less well established.

Experimental data on rapid crack growth in elastic-plastic materials is commonly inter-

preted on the basis of an extension of the Irwin crack growth criterion in those cases in
which a stress intensity factor fields exists. If the applied stress intensity factor is K,
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then a common constitutive assumption is that there exists a material parameter or ma-
terial function, say K,(v,T), depending on crack speed, and possibly on temperature,
such that the crack grows with K, = K,,. Indeed, in the jargon of fracture dynamics,

such a condition provides an equation of motion for the position of the crack tip as a
function of time.

Rapid crack growth in metals subjected to quasistatic loading or stress wave loading of
modest intensity seems to follow this constitutive assumption to a sufficient degree so
that a systematic study of its physical underpinnings is warranted. Thus, in recent years
considerable effort has been devoted to developing models to explain the reasons why
K,, depends on crack speed, and possibly on temperature, as it does for real materials.
The approach is quite straightforward. It is assumed that a crack grows at some speed
v in an elastic-plastic or elastic-viscoplastic material under the action of the input K,
applied remotely from the crack tip region. The potentially large stresses near the edge
of the crack are relieved through inelastic deformation in an active plastic zone, and
a permanently deformed layer is left in the wake of the active plastic zone along each
crack face as the crack advances through the material. A solution of this problem is
then obtained for arbitrary K, and v in the form of stress and deformation fields that
satisfy the field equations in some sense. With this solution in hand, a crack growth
criterion motivated by the physics of the process is imposed on the solution to yield a
relationship between K, and v that must be satisfied for the crack to steadily advance.
This relationship is, in fact, the material function K,,(v,T) for the model problem.

The way in which K,, depends on v and T depends critically on the details of the
fracture separation process, that is, whether it is a void nucleation and ductile hole
growth mechanism or a cleavage mechanism, whether there is a strain rate induced
elevation of flow stress or not, whether the material strain hardens significantly or flows
with little hardening, and so on. The processes that must be analyzed are complex due
to inertial effects and inherent nonlinear. A few general results which have been obtained
are described in the following sections.

RATE INDEPENDENT MATERIAL RESPONSE

Experimental data on the dependence of dynamic fracture toughness versus crack speed
for AISI 4340 steel and other materials that are commonly considered as elastic-plastic in
their bulk mechanical response have some common features. Here, attention is limited to
situations in which crack growth occurs by the single mechanism of void nucleation and
ductile hole growth to coalescence, and in which the extent of plasticity is sufficiently
limited to permit interpretation of the fields surrounding the crack tip region on the
basis of a stress intensity factor. The toughness is found to be relatively insensitive to
variations in speed for very low speeds (less than 20% of the shear wave speed) but
increase dramatically with crack speed for greater speeds. The speed dependence of
the surrounding elastic field is not nearly great enough to account for this dependence,
so an explanation must be sought in the plastically deforming region itself. The most
likely reasons for this toughness-speed behavior are material inertia and material rate
sensitivity. While the strain ratein the crack tip region is necessarily very high, the same
general behavior has been observed in materials that are relatively rate insensitive in their
bulk response up to strain rates of about 10% sec™!, so the role of material inertia has

586

i i rate
been examined separately from the role of rate effects. T.he ge.neral :idiarxri i:)e gte}:::: e
n Jtheoretical fracture toughness versus crack speed relatxonshlg (1;0 a;en tiec e aronth
of inertia on the scale of crack tip plastic zone on the observed dyn

response.

i iti i <al inertia has a significant influence
A rough estimate of the conditions under which mater: R 5, Tor

1thi tive plastic zone is o ] :
¢ development of fields within the ac « ] el
‘:t“vt:ll; qiasisfatic growth of a crack in the plane strain opemng m:dde ;: ::; ;ptoﬁc
;iiéally plastic material, Rice, Drugan and Sham (1980) have Fonstlxiuc ed B ot
fi(-id consisting of a constant state region ahead of the' crack tip, f:l lowe szl e
with singular plastic strain, an elastic unloading region, a.Ifld_ﬁn | a}; zlastic e g

i ks. Within the region of singu . rain,

loading zone along the crack flan the 0 e
«(l:stribgution of particle velocity and shear strain in crack tip polar coordinate

L L 1)
Uy, Up ~ VE IN (To) , o~ €ln ( . )

1 i ic zone, and T
where ¢, is the tensile yield strain, 7, 15 the maximum ext?nt t(})lf tix;anztl?:t;:lezr o aens“y
. the radial distance from the crack tip. If an expression. orﬁ led o o
and the stress work density are derived for th.lS deformathn ef;- h
kinetic energy density to the stress work density as a function o

KE/SW ~10% 1n (%) @)

c r

is si i it might
where ¢ = /E/p is an clastic wave speed. Based on t?xs SltI"‘np.le ?;t)lrir;agt:é alter ; }%an
e i i i ignificant when the ratio 1n
> ected that inertial effects will be significant : d vy
l"m(:)t(f:)nth For example, if v/c = 0.1 then the ratio is greater than one tenthif r/ro <
0one- . 2 ]
i i i lysis
In retrospect, such an estimate would have provided a warning tl:xat asyr:ilpt?rx(: rz::zn);]y.
of Ll;is problc’m would have some subtle difficulties, as has been dlscove;e ‘;111] e
The estimate suggests that for any nonzero v/c thereis a range c?f r./r.ohor s
)uvrti’al effects are important, but that the size of that region dx.mllm; e: varrz im}I)) dly o
A .d. the estimate suggests that inertial eitects npe
B o T hpy yo/¢ « 1 which is similar in form to the restriction on

only over a region for which (r/7o below in (4).

ihe domain of validity of the dynamic asymptotic solution given

Analysis of Steady Growth

i 1 mode
The steady-state growth of a crack at speed v in the the .antl.pla.ne sc}llltzz_xrnx:sgz, ;:a]yzed
111 in fracture mechanics terminology, under small ica.le )gekdllx:g c};);lc hl E?ggg) s
2) and by Dunayevsky an chenl 2 :
by Freund and Douglas (198 ) . ! e e ot
quati i 1 include the equation of momentum s
equations governing this process includ ation e e o B ran
sple t relations, and the condition that t es ress ¢ : . ¢
ihlh p-ldrfuxzfnbe the same as the near tip stress distribution in a corrcspond'mis :Lans] é(cl
t““:‘.;—)‘cm. Tor elastic-ideally plastic response of the rnartena,l, the strefss st:xte ]ihr umed
‘n lie on the Mises yield locus, a circle of radius 7, 1D thchpl;;ne o rec :;\tgal (Pr;mdtl—
o i lated through the mcrem
3 ents, and the stress and strain are relate . .
;;:,::-I‘:)Ifliow ;ule. The material is linearly elastic with shear modulus g In regions where

{hhe stress state does not satisfy the yield condition.

587




With a view toward deriving a theoretical relationship between the crack tip speed and
the imposed stress intensity facior required to sustain this speed according to a critical
plastic strain crack growth criterion, attention was focussed on the strain distribution on
the crack line within the active plastic zone, and on the influence of material inertia on
this stress distribution. It was found that the distribution of shear strain on this line, say
7y=(z,0) in crack tip rectangular z,y coordinates, could be determined ezactly in terms
of the plastic zone size r, in the parametric form

iy 1—m? 1 —m?2h?
7“(1.’0)_%{1-( 2m? )hl< 1—m?
= (1-1)/(1+t) (1—-m)/2m
IR / ’
0

FT Im) 19

ds

where m = v/c, and ¢, is the elastic shear wave speed. While the integral I(¢) has
a representation in terms of elmentary functions only for very special values of its
argument, it is easily evaluated by numerical methods for any nonzero value of m.

The exact result (3) resolved a loag standing paradox concerning mode I1I crack tip fields.
Rice (1968) showed that the near tip distribution of strain 7,.(z,0) for steady growth
of a crack under equilibrium corditions was singular as In? (z/r,) as z/r, — 0. On the
other hand, Slepyan (1976) shoved that the asymptotic distribution for any m > 0 was
of the form (m™! — 1) In(z/r,) as /r, — 0. These two features could be verified by
examining the behavior of the exact solution for dynamic growth (3) under the condition
m — 0 for any nonzero value o z/r, and under the condition that z/r, — 0 for any
nonzero value of m, respectively. The resolution of the paradox was found, however, in
the observation that Slepyan’s asymptotic solution is valid only if

(afra)™ "™ g 1. ()

Thus, the apparent inconsistency arises from the fact that the asymptotic result due to
Slepyan is valid over a region that becomes vanishingly small as m — 0.

Graphs of the plastic strain distribution on the crack line in the active plastic zone are
shown in Fig. 1 for m = 0, 0.3,0.5. The plastic strain is singular in each case, as has
already been noted. The most significant observation concerns the influence of material
inertia on the strain distribution. An increase in crack speed results in a substantial
reduction of the level in plastic strain for a fixed fractional distance from the crack
tip to the elastic-plastic boundary. Therefore, if a local ductile crack growth criterion is
imposed, then it would appear that the fracture resistance or toughness would necessarily
increase with increasing crack tip speed. To quantify this idea, the fracture criterion
proposed by McClintock and Irvin (1965) was adopted. According to this criterion, a
crack will grow with a critical value of plastic strain at a point on the crack line at a
characteristic distance ahead of the tip. The crack will not grow for levels of plastic
strain at this point below the critical level, and levels of plastic strain greater than the
critical level are inaccessible. To make a connection between the plastic strain in the
active plastic zone and the remoie loading, a relationship between the size of the plastic
zone and the remote applied stress intensity factor is required. This can be provided
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Fig. 1. Strain on the crack line in the active plastic zone for 'steady dynamic
growth of a mode III crack in an elastic-ideally plastic material from (3).

only through a complete solution of the problem, and it was obtained for the case of
mode 111 by Freund and Douglas (1982) through a full field numerical solution of the
governing equations. The resulting theoretical fracture toughness K174 versus crack
speed is shown in Fig. 2 for continuous variation of the critical plastic strain from v, = 0
t 7. = 207,/p. The critical distance has been eliminated in favor of Kyry., the level of
applied stress intensity required to satisfy the same criterion for a stationary crack in the
same material under equilibrium conditions. The variable intercept at m = 0 indicates
an increasing amount of plasticity with increasing critical plastic strain, and the intercept
values correspond to the so-called steady state toughness values of the theory of stable
ernck growth, that is, with the plateau level of the resistance curve.

~ The plot in Fig. 2 illustrates some typical features. The ratio of Kirra/Krpgc is a mono-

tonically increasing function of crack speed m for fixed critical strain, and this function
inkes on large values for moderate values of m. Although there is no unambiguous way
16 nssociate a terminal velocity with these results, a maximum attainable velocity well
below the elastic wave speed of the material is suggested. It is emphasized that the vari-

~ ation of toughness with crack speed in Fig. 2 is due to inertial effects alone. The material

senponse is independent of rate of deformation, and the crack growth criterion that is

“enforced involves no characteristic time. If inertial effects were neglected, the calculated
_ toughness would be completely independent of speed. The question of the influence of
material rate sensitivity on this relationship is a separate issue.

~ The equivalent plane strain problem of dynamic crack growth in an elastic-ideally plastic

sunterial has not been so fully developed. However, a numerical calculation leading
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to a I"racture toughness versus crack speed relationship, analogous to Fig. 2, has been
described 'by Lam and Freund (1985). They adopted the critical crack tip ope’nin ang]
gr(:iwth criterion and derived results for mode I on the basis of the Mises yield coﬁditiig
?.n Jgdﬂow theory of plasticity that are quite similar in general form to those shown
or mode ITI. The nature of the elastic-plastic fields deep within the active plastic zo
were dxfﬁf:ult to discern from the finite element results, and an analytical study of tﬁee
;:symptotxc field was under?aken by Leighton et al (1987) in order to examine this feature.
r v&;as found that the plastic strain components had bounded limiting values at the crack
alspl 7rrn ang rtl}c:nszlero crack s'_peed m = v/c,, but that these limits depended on crack speed
- .bl oth Slepyan (1976) and Achfenbach and Dunayevsky (1981) reported studies of
is problem in which they took elastic compressibility into account. They were able t
e}):tract solutions valid very close to the crack tip in the limit of vanishing crack speed I(;
shoulc'i be noted that in both studies the Tresca yield condition was used together v&;ith
the M)ses flow rule, so that the fields described are consistent with normality of the plasti
stral.n rz_ite to the yield surface only in the limit of incompressibility. In additionp gstl}i
studles.lmposed restrictions on the out-of-plane deformation that a.rise from ass7 (')
norma.ht}.l of th? plastic strain rate to the Tresca yield surface. In a study of theu::rgi
aric;}l:lfam in t.he mcompressible. limit, Gao and Nemat-Nasser (1983) reported a solution
o foiuilpz in d(stress (;md particle velocity across radial lines emanating from the crack
o rack speeds between zero and the elastic shear wave speed, where the jump
gnitudes were subject to the appropriate jump conditions. It is shown by Leighton
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~ +t nl (1987), however, that if the sequence of deformation states throughout the jump

st be admissible plastic states, consistent with the theory of mechanical shocks, then
Aiscontinuities in the angular variation of stress and particle velocity components around

~ the crack edge can be ruled out.

~ Eeperimental Observations

%ome data on the dynamic fracture toughness of metals during rapid crack growth are
svailable. Rosakis, Duffy and Freund (1984) used the optical shadow spot method in
seflection mode to infer the prevailing stress intensity factor during rapid crack growth
i1 4340 steel hardened to Rc = 45. Thisis a relatively strain rate insensitive material

~ with very little strain hardening, so that the material may presumably be modeled as

lastic-ideally plastic. The observed toughness varied little with crack speed for speeds
up to about 600 to 700m /s, and thereafter the toughness increased sharply with increas-
ing crack tip speed. The general form of the toughness versus speed data was similar
i the theoretical prediction based on the numerical simulation reported by Lam and
Vreund (1985), lending support to the view that material inertia on the scale of the crack
tip plastic zone has an important influence on the perceived dynamic fracture toughness.
Similar data were reported by Kobayashi and Dally (1979) who made photoelastic mea-
+urements of the crack tip stress field by means of a birefringent coating on the specimen.
Data on crack propagation and arrest in steels were reported by Dahlberg, Nilsson and
Brickstad (1980).

Dynamic Ductile Hole Growth

I'he examination of fracture surfaces of a wide range of metals and other materials follow-
ing tensile crack growth under essentially plane strain conditions leads to the conclusion
that the process of crack advance is essentially the nucleation of voids or cavities at ma-
terial inhomogenieties, and the subsequent ductile growth of these voids to coalescence.
(ertain features of the elastic-plastic crack tip field, which provides the environment in
which the mechanism operates, are important for this process. Among these are the
high triaxial stress condition within the small strain region ahead of the crack tip that
serves to nucleate voids and the zone of large plastic straining directly ahead of the tip
{hat accommodates the ductile expansion of voids in this region necessary for coalescence
with the main crack. The mechanical process of the ductile growth of cylindrical and
spherical voids in plastic materials has been described by McClintock (1968) and Rice
and Tracey (1969), respectively, who showed the strong influence of the mean normal
stress component on the rate of growth of an isolated void.

McClintock (1968) and Rice and Johnson (1970) developed models of the void growth
process within the crack tip field with a view toward relating microstructural features
\o fracture mechanics parameters for fracture initiation and stable crack growth. While
{hese models can be viewed only as rough approximations, they do appear to capture the
essence of the hole growth mechanism. It should be emphasized that the assumption of a
fully ductile separation mechanism on the microscale does not necessarily imply extensive
plastic flow in the body containing the crack. Indeed, it is quite possible to observe fully
ductile separation at a crack tip in a material for which the plastic zone size is small
and conditions of small scale yielding are satisfied. Likewise, extensive plastic flow in the
body does not imply that the separation mechanism is a ductile mechanism. It could as
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well be cleavage induced by material rate effects or strain hardening as a result of the
plastic flow.

In order to examine the influence of material inertia on a small scale on the ductile void
growth process, a simple sphercally symmetric model introduced by Carroll and Holt
(1972) is adopted. This model was further developed within the framework of dynamic
spall fracture by Johnson (1981). Consider a thick spherical shell of incompressible
material with inner and outer radii r = a(t) and r = b(t), respectively, where r is the
Eulerian coordinate representing distance from the fixed center of the shell. The material
is initially at rest with void radius a, = a(0). At time ¢ = 0, a uniform normal traction
of magnitude o, begins to act on the outer surface. The inner surface is traction free. It
is assumed that elastic effects are negligible and that the magnitude of o} is sufficient to
produce ductile expansion of the shell.

With a view toward making a connection with the process of ductile void growth and
coalescence as a mechanism of crack advance, the parameter a, is identified with a
representative physical dimension of the void at nucleation, and 2b, = 2b(0) is identified
with the spacing of void nucleation sites. If a body with a periodic array of such voids is
subjected to a mean normal stress oy resulting in spherical growth of the voids, then the
body ‘fractures’ at some later fime, say ¢t = t*, for which a(t*) = b,. The objective of
this simple model calculation is to determine the relationship between o, and #*. With
reference to a crack growth process, 2b, /t* and o, provide crude estimates of crack speed
and crack tip field intensity, respectively.

The velocity in the radial direction of a particle with instantaneous radial coordinate r is
vr(r,t) = aa® /r? . Furthermore, the inner and outer radii are related by b3 — b3 = a3 — a3
identically in time. Integration of the momentum equation with respect to r from a to b

yields
4 b _
ab:p[;az(%_l)_(aandz)(g_l)]_2/ Iy, (5)

This result is independent of the constitutive description of the material, except for the
assumption of incompressibility. It is tacitly assumed in writing (5), however, that the
normal stress difference o, — o is completely determined by the velocity field by means
of a constitutive description for low. This description can be for rate independent or
rate dependent material responss.

To examine the influence of inertia on void growth, suppose that the material is perfectly

plastic with tensile flow stress of magnitude o,. Thus, o, — 0, = —0, in this case and
b
- b
2/ It g = —26,In - . (6)
s r a

The minimum applied stress oy, required to produce flow in the sphere is (Ob)min =
20, 1In(b,/a,). For any given valu: of oy, the relation (5) provides a second order ordinary
differential equation for a(t) subject to the initial conditions that a(0) = a, and a(0) = 0.
This equation can be solved numerically for any values of b,/a, > 1 and 04/(03)min > 1.
A particular result is shown in Fig. 3 for the cases of bo/a, = 20 and b,/a, = 100, in the
form of a graph of o4 /(0})min versus bo/kt* where k = \/p/o,. Recall that t* is defined
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Fig. 3. The stress required to expand a thick spherical ideally plas.f.itl: §hell to
a specified size versus the time required to do so for two values of initial hole
size.

by the condition that a(t*) = b,. It is evident from the result that any applied st{"ess
only slightly larger than (o4)min will result in growth of the void to critical si?e in a time
1* = b,/2k. However, if the void must be grown to critical size in a shorter time, then a
larger stress oy is required to overcome the inertial resistance.

Bascd on this simple model calculation, the time b,/2k appears to have particular signif-
sennce for assessing the influence of material inertia on the physical scale of the d1.1ctile
hiole growth mechanism. This time can be estimated for high strength steel or aluminum
alloys for which the crack growth mechanism is predominantly ductile hole growth. Of
gvmltcr interest, perhaps, is the ‘speed’ 2b,/t* which, as noted above, is a crude estimate
ol crack propagation speed if the initial void nucleation site spacing .is 2b.o @d_ th? time
sequired to grow the voids to the critical size is t*. Thus, microscale inertia is significant

for b,/a, = 20 if
2b,/t* > 4+\/o,/p . (7)

If the parameter k¥ = \/0,/p has a value of 300m/s, which is typical for high streng%h
- alloys, then (7) implies that the crack speed at which local inertial effects result in
a0 observable influence on macroscopic dynamic fracture toughness is about 1200m/s.
 This speed is somewhat greater than the observed crack speed at which the measured
o1 inferred dynamic fracture toughness for such materials begins to show a dramatic
increase with speed, which is usually in the range of 500 — 1000m/s. Material strain

inte dependence has been neglected in this simple analysis, and it is possible that the

influence of rate effects could be equal to or greater than the influence of inertial effects,
enpecially for small voids (Curran et al, 1987).

593



I

HIGH STRAIN RATE CRACK GROWTH

An estimate of the plastic strain rate near the tip of an advancing crack can be obtained
as follows. Suppose that the yield stress in shear is 7, and that the elastic shear modulus
is p, so that the yield strain is 7,/pu. As a rough estimate of the plastic strain rate,
consider the yield strain divided by the time required for the crack tip to traverse a
region that is the size of the active plastic zone at speed v. Following McClintock and
Irwin (1965), if the size of the plastically deforming region is interpreted as the largest
extent in an elastic field of the locus of points on which the maximum shear stress is 7,,
then the estimate of strain rate is

(F™)est ~ ToTy /WG (8)

where energy release rate G is the characterizing parameter for the elastic field. Clearly,
for rapid growth of a crack in a low toughness material, the strain rate estimate can be
enormous, in excess of 10 sec™!.

Viscoplastic Material Response

The particular material model known as the over-stress power law model has been con-
sidered by Lo (1983), Brickstad (1983) and a number of other authors. According to
this idealization, the plastic strainrate in simple shear 4? depends on the corresponding
shear stress 7 through

PP =+ {(r =)/} for T2 (9)

where 7, is the threshold strain rate for this description, or the plastic strain rate when
7 = 74. The description also includes the elastic shear modulus 4, the viscosity parameter
Y0, and the exponent n. A common special case is based on the assumption that the slow
loading response of the material is elastic-ideally plastic and that all inelastic strain is
accumulated according to (9). For this case, 4, = 0 and 7, is the slow loading flow stress
To. For other purposes, it is assumed that (9) provides a description of material response
only for high plastic strain rates, in excess of the transition plastic strain rate 7, and
for stress in excess of the corresponding transition stress level 7,. For low or moderate
plastic strain rates, the variation of plastic strain rate with stress is weaker than in (9),
and a common form for the dependence is (cf. Frost and Ashby, 1982)

4* = g1(7) exp{—g2(7)} (10)

where g, and g, are algebraic functions. The marked difference between response at
low or moderate plastic strain rates and at high strain rates may be due to a change
in fundamental mechanism of plastic deformation with increasing rate, or it may be a
structure induced transition. For present purposes, it is sufficient to regard the difference
as an empirical observation. The two forms of constitutive laws (9) and (10) can lead
to quite different results in analysis of crack tip fields and, indeed, the form (9) leads to
fundamentally different results for different values of the exponent n.

Lo (1983) extended some earlier work on the asymptotic field for steady quasistatic crack
growth in an elastic-viscoplastic material by Hui and Riedel (1981) to include inertial
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sfiects. In both cases, the multiaxial version of (9) with ¢ =0 and 7, = was adOP(;eSht(:
fescribe inelastic response, with no special provision for unloading. .They showe A a
u values of the exponent n less than 3, the asymptotic stress field is the elastic Strif_is
#ield. For values of n greater than 3, on the other hand, Lo constructed an aﬁyftnp otic
#i<ld including inertial effects having the same remarkable feature of complete alll Or:lc_‘my
fiuind by Hui and Riedel, that is, it revealed no dependence on the le\.rel of remote loa: flthg.
fw steady antiplane shear mode IIT crack growth, Lo found the radial dependence ot the
iielnstic strain on the crack line ahead of the tip to be

22 (2,0) = (n = 1)(v/302) /"7 T (/) (11)

where the dependence of the amplitude factor Ty, on crack speed is given graphlcallytgy
{45, who also analyzed the corresponding plane strain problem. Not§ that as n— 01 5 €
glustic strain singularity becomes logarithmic. The full field solution for this III>)TO Tm
~ under small scale yielding conditions was determined numerically by Freund and hougfas
11083). The numerical results showed a plastic strain singulz?,rity much stronger tdan Ox

Ahe tate independent case, and it appeared from the numerical results that th‘:i c;’mf_iég
' dominance of the asymptotic field within the crack tip plastic zone expanded Wi
serensing crack tip speed. These observations are consistent with (11).

=

A Viscoplastic Crack Growth Model

se concerned with
rowth of a sharp
tate and rate of

A particularly interesting class of dynamic fracture problems are .tho
 ¢tack growth in materials that may or may not experience rapid g
~ ilenvage crack, depending on the conditions of temperature, strfess s : o
- tonding. These materials may fracture by either a brittle or d.uctlle m'e(?hanl?m on the
~ uicroscale, and the focus of work in this area is on establishing conditions 10T fone- :f
~ the other mode to dominate. The phenomenon is most commonly observed in ferri 1c
~ siecls. Such materials show a dependence of flow stress on strain rate, and the strain
 rwlos experienced by a material particle in the path of an advancing crack are I?Oteﬂtclle_ly
_ enormous. Consequently, the mechanics of rapid growth of a sharp macroscopic cr# :;1
un clastic-viscoplastic material that exhibits a fairly strong variation of flow stress with
 4iinin rate has been of interest in recent years. The general features of the process as
~_saperienced by a material particle on or near the fracture path are str.aight forVLard-dAS
il edge of a growing crack approaches, the stress magnitude tends to increase t ere ‘li
44 the stress concentrating effect of the crack edge. The material responds by flowing a
& rate related to the stress level in order to mitigate the influence of the crack edge. It
appears that the essence of cleavage crack growth is the ability to elevate the stresi t:? a
sitical level before plastic flow can accumulate to defeat the influence of the crack tip.
~ 1u terms of the mechanical fields near the edge of an advancing crack, the ra_te of str.ess
ucrease is determined by the elastic strain rate, while the rate of cra(.:k tip blunting
i determined by the plastic strain rate. Thus, an equivalent obst.ervatlon 1s that.thz
elastic strain rate near the crack edge must dominate the plastic strain rate for S‘ll)sltamed
clenvage. It is implicit in this approach that the material is intrinsically cleava 19_, ;ﬂz
1 question investigated in concerned with the way in which work can be supphied to
the crack tip region.

e problem has been studied from this point of view by Freund a.nd H.utchinson't(lgf.f))-
~ Ihey adopted the constitutive description (9,10) with n = 1. This is indeed a situation
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for which the near tip elastic strain rate dominates the plastic strain rate. Through an
approximate analysis, conditions necessary for a crack to run at high velocity in terms
of constitutive properties of the material, the rate of crack growth, and the overall crack
driving force were extracted under small yielding conditions.

Consider the crack gliding along through the elastic-viscoplastic material under plane
strain conditions. At points far from the crack edge, the material remains elastic and the
stress distribution is given in terms of the applied stress intensity factor K;. Equivalently,
the influence of the applied leading may be specified by the rate of mechanical energy
flow into the crack tip region from remote points G, and these two measures are related
by means of

1-22

G= A(v)K? (12)
where v and E are the elastic constants of an isotropic solid and A is a universal function
of the instantaneous crack speed v. The function has the properties that A(0) = 1,
A'(0) = 0 and A(v) — co as v — ¢,. For points near the crack edge the potentially large
stresses are relieved through plastic flow, and a permanently deformed but unloaded
wake region is left behind the zdvancing plastic zone along the crack flanks. For material
particles in the outer portion of the active plastic zone the rate of plastic straining is
expected to be in the low or moderate strain rate range, whereas for particles close
to the crack edge, the response is modelled by the constitutive law (9) with n = 1.
Because of elastic rate dominance, the stress distribution within this region has the same
spatial dependence as the remdte field but with a stress intensity factor different from the
remote stress intensity factor. The crack tip stress intensity factor, say K Itip, 1s assumed
to control the cleavage growth process. The influence of the remote loading is screened
from the crack tip by the intervening plastic zone, and the main purpose of the analysis
is to determine the relationship between the remote loading and the crack tip field. For
present purposes, it is assumedthat the crack grows as a cleavage crack with a fixed level
of local energy release rate, say GYip- The question then concerns the conditions under
which enough energy can be supplied remotely to sustain the level of energy release rate
G, at the crack tip.

The matter of relating the applied G to G¢ip Was pursued by enforcing an overall energy
rate balance. The balance may be cast into the form

h
f‘.p =G - l / 0‘,‘1'6.,']' dA — / U: dy (13)
v Ja —h

where A is the area of the active plastic zone in the plane of deformation, A is the
thickness of the plastic wake far behind the crack tip, and U? is the residual elastic
strain energy density trapped in the remote wake. This relation simply states that the
energy being released from the body at the crack tip is the energy flowing into the crack
tip region reduced by the energy dissipated through plastic flow in the plastic zone, and
further reduced by the energy trapped in the wake due to incompatible plastic strains.
The expression is exact.

Through several approximatiors, the complete energy balance (13) was reduced by Fre-
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Fig. 4. A surface representing conditions on applied crack tip driving force
G's, crack tip speed v and temperature tha?t correspond to §teady crack propa-
gation, as predicted by (14). The plateau is an artifice arising from truncation
of the surface at a suitable level.

und and Hutchinson (1985) to the simple form

G/G;, = 1+ D(m)P. (14)

where the dimensionless parameter P, is ¥,/1p G",’,-p(l + 2¥ep/Fore) /3¢ and D(m) is a
dimensionless function of crack tip speed m = v/c, and p is the ma.terial mass density. P
i n monotonically increasing function of temperature for steels with values in the range
from about zero to twelve as temperature varies from 0K to about 400 K; see Fig. 5.
I'he function D(m) is asymptotically unbounded as m — 0 and m — 1, a.nd it has a
minimum of order unity at an intermediate crack tip speed. The applied crack tip driving
force, say G, is related to the crack tip energy release rate by Gs = G/(.l = v/e¢,) for
# semi-infinite crack in an otherwise unbounded body, and this relationship is adopted
here as an approximation. A graph of Gs/Gf;, is shown in Fig. 4 in the form of a surface
over the crack speed—temperature plane.

‘The graph in Fig. 4 gives the locus of combinations Gs,v,T for which steady state

~ propagation of a sharp crack can be sustained. The implication is that if a cleavage
~ ¢rack can be initiated for a combination G, v, T that is above the surface, then the crack

will accelerate to a state on the stable branch of the surface (i.e, the side with incre.asing
(75 at fixed temperature). If the driving force diminishes as the crack advances, or if i.;he
local material temperature increases as the crack advances, then the state combination
will move toward the minimum point on the surface at the local temperature. If the
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Fig. 5. The minimum driving force G % needed to drive the crack dynamically
as a function of temperature. The solid line results from Fig. 4, and the dashed
line from a modified result due to Mataga et al (1987).

driving force is further decreased, or if the temperature is further increased, then growth
of a sharp cleavage crack cannot be sustained according to the model. The implication
is that the crack will arrest abruptly from a fairly large speed, and a plastic zone will
then grow from the arrested crack.

Of special significance is the observation that, at any given temperature, the variation
of required driving force with cack speed has an absolute minimum, say G%/Gg;,. This
implies that, according to this model, it is impossible to sustain cleavage crack growth
at that temperature with a driving force below this minimum. Thus, this minimum as
a function of temperature may be interpreted as the variation of the so-called arrest
toughness for the material with material temperature. This minimum is plotted against
temperature for the case of mild steel in Fig. 5.

Further crack growth beyond the first arrest is possible if either a ductile growth criterion
can be met or if cleavage can be reinitiated through strain hardening in the evolving
plastic zone. The details of the model have been refined through full numerical solution
of the problem (Freund et al, 1986), but the essential features have not changed with more
precise analysis. A modification of the basic model was proposed by Mataga et al (1987)
that provides a description that is in better agreement with full field numerical solutions
than the model outlined above. In the original development, it was assumed that the
plastic dissipation was completely controlled by the near tip stress intensity factor field,
say K. However, this stress intensity factor, which is asymptotically correct, must give
way to the far field stress stress intensity factor K with increasing distance from the crack
edge. It was observed by Malaga et al (1987) that the estimate of plastic dissipation
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war improved significantly, at least in comparison with finite element simulations, if the
\ustic dissipation was estimated on the basis of a ‘mean’ stress intensity factor \/KeipK .
e graph of arrest toughness versus temperature for parameters corresponding to mild
4e¢] nre also shown in Fig. 5.

Eeperimental Observations

~ fmportant experiments on crack propagation and arrest in steel specimens are currently
{wing carried out by deWit and Fields (1987). Their specimens are enormous single
“aslpe notched plates loaded in tension. The growing crack thus experiences an increasing
deiving force as it advances through the plate. A temperature gradient is also established
4 the specimen so that the crack grows from the cold side of the specimen toward
41 warm side. Based on the presumption that the material becomes tougher as the
winperature is increased, the crack also experiences increasing resistance as it advances
#hyongh the plate. The specimen material is A533B pressure vessel steel, which is both
+ery ductile and strain rate sensitive. In the experiments, the fracture initiates as a
~ sheavage fracture and propagates at high speed through the specimen into material of
 iwerensing toughness. The crack then arrests abruptly in material whose temperature
& sbove the nil ductility temperature for the material based on Charpy tests. A large
~ phwstic zone grows from the arrested crack edge, and cleavage crack growth is occasionally
 yeinitinted. The essential features of the experiment appear to be consistent with the
~ swnlel of high strain rate crack growth outlined in above, and this model appears to
piovide a conceptual framework for interpretation of the phenomenon. An analysis of
sapid crack growth in a rate dependent plastic solid has also been carried out by Brickstad
~ {1P81) in order to interpret some experiments on rapid crack growth in a high strength
wtee],

A new experiment for studying dynamic fracture processes that occur due to loading
~ pulses of extremely short duration has been developed by Ravichandran and Clifton
~ £1956). A thin disk of a high strength steel containing a mid-plane prefatigued edge

¢rack that has been propagated halfway across the diameter is impacted by a thin flyer

phate of the same material. A compressive pulse propagates through the specimen and
sellects from the rear surface as a step tensile pulse of duration of about 1 ps. This plane

_ wave londs the crack and causes propagation of the fracture. The motion of the rear

sutlnce of the specimen is monitored during the event by means of a laser interferometric

teclinique. In effect, this situation is that of plane strain deformation of a semi-infinite
~ ernck in an unbounded body subjected to plane wave loading, at least for a microsecond
i+ Iwo. For 4340 steel with Rc = 52 tested at a temperature of —100 C, the cracks
_ giow predominantly as cleavage cracks. Based on optical measurements of the surface
santion of the specimen and comparison with detailed elastic-viscoplastic calculations,

i uppeared that the cracks grew more nearly at constant velocity crack than with a

fiurdl level of energy release rate or stress intensity factor. This observation is similar to
bt made by Ravi-Chandar and Knauss (1984) who studied crack growth in the brittle
~ jwdymer Homalite-100. In both cases, this observation was made in situations where the
bl was suddenly applied and the load level was very intense compared to the minimum

Ll necessary to induce fracture in the same situation. The results suggest that the one
~ pmrameter characterization of the crack tip conditions may not be adequate to describe

fsacture response under such conditions, and that damage evolution in advance of the

smin crack is important in the process.

s SR
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CONCLUDING REMARKS

The results described in the preceding sections reflect some progress toward discovery
of the role played played by crack tip plastic fields in establishing conditions for rapid
advance of a crack in an elastic-plastic material. Understanding of this issue is far from
complete, and a few of the open questions that could be profitably pursued are identified
in this concluding section. For example, much of the modeling that has resulted in a
detailed description of crack tip elastic-plastic fields has been based on the assumption
that the fields are steady as seen by a crack tip observer. This approach overlooks all
transient aspects of the process. The picture of the way in which a crack tip plastic zone
develops in a cracked, rate sensitive structural material under the action of stress wave
loading is not clear, but the question is important in the sense that these fields determine
whether or not the crack will advance. The same issue appears to be at the heart of the
cleavage initiation process in steels, but on a microstructural scale. Here, the sudden
cracking of carbides or other brittle phases due to incompatible plastic strains provides
a nucleation mechanism, and the question is whether or not these dynamic microcracks
penetrate into the adjacent ferrite as sharp cracks. The answer seems to hinge on the way
in which plastic strains develop near the carbide-ferrite interface due to the appearance
of the microcracks in the brittle phases.

The transients of the arrest of a cleavage crack in a structural material are also unclear
at this point. A running crack appears to arrest because conditions for the continuous
reinitiation of cleavage cannot be maintained (Irwin, 1987). In terms of the model dis-
cussed in section 4, arrest occurs because conditions for elastic rate dominance of the
local field cannot be maintained. However, the model does not provide information on
the process thereafter. It appears from the experiments reported by deWit and Fields
(1987) that arrest is quite abrupt, that a large plastic zone grows from the crack edge
following arrest of the cleavage crack, that the crack may grow subsequently in a ductile
mode, and that cleavage may be reinitiated at a later stage. It is not clear if the cleavage
reinitiation is due to a rate effect or to a combination of strain hardening and constraint
in the interior portions of the specimen.

Modeling of plasticity effects in dynamic crack growth has been restricted to two di-
mensional systems, for the most part. It is likely that a number of three dimensional
effects are of sufficient importance to warrant further investigation. For example, crack
propagation studies are often carried out with plate specimens. For such specimens, the
transition from plane stress conditions in regions far from the crack tip compared to
plate thickness to plane strain or generalized plane strain conditions near the crack edge
is not clear. Yang and Freund (1985) suggest that plane stress conditions prevail only for
points beyond about one-half the plate thickness from the crack edge for elastic deforma-
tions. . Out-of-plane inertia is of potential importance in these three dimensional fields,
but this effect has not been investigated to date. Furthermore, the role of ductile shear
lips at the free surfaces or of ductile ligaments left behind a cleavage crack as it advances
through a structural metal are not clear at this time. In a study of fracture initiation
in dynamically loaded specimens of a ductile material by Nakamura et al (1986), it was
shown that these three dimensional effects are potentially very significant.

Finally, it is noted that the analytical models discussed above have been developed
for the study of rapid crack growth in a rate-dependent elastic-plastic material under
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~ «omditions than permit crack advance in a cleavage mode, and separately for rapid crack

sdvimce in an elastic- plastic material when the crack advances by means of a loca% du.ctile
tuechanism. However, models suitable for study of rapid crack growth that permit either
sunde of crack advance, with the operative mode being determined by which of two
sompeting fracture criteria prevails, have been elusive. A preliminary study of a very
~inple model of this type has been reported by Lee and Freund (1988). The process
+! dynamic tensile crack growth in a material was analyzed under small scal_e yielding
semditions with the crack tip plastic zone modeled as a strip yield zone extending ahead
+! the advancing crack tip. Following Glennie (1971) and others, rate del?endenct? of
idnatic flow was taken into account by assuming that the cohesive stress in the_y.1e1d
#one depends linearly on the local rate of opening of the yield zone. The conditions
snder which a crack can advance steadily according to either of two criteria were then
«omsidered. A crack tip opening criterion was identified with a locally ductile mode,
and a critical stress condition was identified with a cleavage mode. The analysis led 'to
+onditions among the applied stress intensity factor, the crack speed. and tl.}e m.atefxal
vincosity that are necessary for sustained crack growth in either case, with th'e implication
that the criterion that is easiest to satisfy will establish the mode by which the crack

ndvances.

A representative result is shown in Fig. 6 in the form of a surface of applied stress intensity
{nctor necessary to sustain growth according to either criterion over the plane of crack
speed v normalized by the elastic shear wave speed ¢, and a viscosity parameter tht.xt
«hmracterizes the sensitivity of the cohesive zone stress to the opening rate. The dynaxr.uc
stress intensity factor is normalized by the initiation toughness K. which necessarily
#ntisfies the crack tip opening criterion.

With reference to Fig. 6, the following crack growth behavior is represented. Suppose tl.mt
# cracked body characterized by a particular value of 3 is loaded so that the n?rack begins
to advance from speed v = 0, and that the applied stress intensity factor increases as
the crack advances. The result implies that the crack will accelerate with the separation
on o local scale occurring according to a ductile mechanism. In terms of the surface in
1. 6, the state of K and v follows the surface along a path for which g = contetant,
«tarting from K = K, and v = 0. The crack accelerates until a speed corresponding 'to
the position of the 'ridge’ in the surface is attained. At this point, the mode (.)f material
separation converts to a stress controlled mode due to the rate induced elcva.txo.n of flow
»tress. The only way for the applied stress intensity factor to further ill(‘l‘Cﬂ.SC']S for. 'f,hc
crack speed to suddenly become very large, so that the state ends up on the rapidly rising
portion of the surface associated with inertial effects (not shown in Fig. 6). Thereafter,
if the applied stress intensity factor decreases, then the state falls to the vmin%mum in
the path for fixed 8. Further decrease of the applied stress intensity factor 11.nphcs.cra..ck
nrrest, or no further growth can be sustained according to either of the poss1ble. criteria.
I'hese general features are consistent with the observations made above concerning crack

arrest in rate sensitive materials.
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