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ABSTRACT

The purpose of this paper is to report on a new approach to deal with the analytical evaluation for the
solution of a three dimensional problem of a semi-infinite stress—free crack in an unbounded, linearly,
elastic, isotropic medium.

The fundamental solution of a Green's function for a point load acting in the interior of an unbounded,
homogeneous, isotropic, thick layer is used in connection with the boundary integral equations technique in
order to obtain a formulation for the stress and displacement fields around the crack. This new formulation
is based in the Green function obtained by the author and defined elsewhere. The formulation may
analogously be applied to other three-dimensional cracked finite or infinite configurations.

KEYWORDS
Plate solution, 3-D Crack, Boundary Element Method.

1. REVIEW OF THE BOUNDARY INTEGRAL EQUATION
METHOD IN THREE-DIMENSIONAL CRACKED CONFIGURATIONS

The boundary-integral equation method for elastic stress analysis is now well established
a8 a complementary tool to finite element methods (Banerjee, 1981; Brebbia, 1978). Some
of the advantages over other numerical solution procedures are well known. Foremost
is the reduction of the dimensionality of the problem by one. Secondly, it is specially
well suited $o problems extending to infinity. Thirdly, since the formulation is based on
fundamental solutions that satisfy the governing differential equations, approximation of
the variables is required only on the boundary in the numerical solution of the equations.
Once the boundary solution has been numerically obtained, interior values may easily
determined. These features are particularly advantageous for modeling regions with high
stress gradients with great accuracy and efficiency, making this technique an appealing
tool for numerical solution of problems in linear—elastic fracture mechanics.

In a number of papers, various boundary integral formulation have been shown $o be use-
ful for particular classes of boundary-value problems. The main difference among them
focusses on the use of diverse Green's functions which are more appropriate for dealing
with the geometry of the problem considered. Thus, for generic two—dimensional and
three—dimensional elastostatic problems, Kelvin’s fundamental solution of 2 concentrated
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load in an infinite medium has been widely used (Risso, 1967; Cruse, 1969). Also, for
problems involving a free—surface the solution presented by Melan (1932), for the stress
distribution due to point loads applied within the isotropic half-space, or the one given
by Mindlin (1936), for the half-space are of an utter interest. These fundamental solu-
tions have been applied to the boundary element technique (BEM) by Telles & Brebbia
(1981).

Further, for elastostatic problems contiining cutouts, Kelvin’s solutions in 2D and 3D
have been profusely used. On this lane rests the pioneering work of Cruse and VanBu-
ren (1971). Since then a huge stack of papers involving cracks, tackled by the bound-
ary integral technique, have been published. Among them, the early study by Snyder
and Cruse (1973) is worth to be mentioned. In their report several finite anisotropic
two-dimensional plates were analised by using the Green function corresponding to a
concentrated load applied to an infinite plane containing a semi-infinite stress free crack.
Thus, two—dimensional crack problems vith finite geometry are then solved by the BEM
with no crack modeling required; the crack presence being accounted for by the new
fundamental solutions.

Several numerical formulations have been devised for the application of the boundary in-
tegral equation method to fracture mechanics problems in three—dimensions. Pioneering
work, in this field, was that of Cruse (1970, 1972, 1973, 1974, 1975, 1977, 1971, 1977)
and Tan & Fenner (1978), among others (1985).

It is the purpose of this paper to repor on the application of a new analytical method
to the solution of the three—dimensional through crack on an infinite plate, as well as its
use to other 3-D cracked, finite or infinite configurations.

3. INTEGRAL REPRESENTATIONS

This section deals with the integral formulation of the elastostatic problem for the layer—
space defined for the case of a semi-infinite three-dimensional crack. The following
developments are based on previous progress, by the author (1985, 1987, 1987), in the
development of the necessary theoretical background for the determination of stresses
and displacements in three-dimensional plates subjected to concentrated point loads.

Consider a linear, elastic, isotropic, homogeneous medium occupying a space described
by an infinite three-dimensional thick liyer subjected to a concentrated body force acting
at a point £ in a direction indicated by the unit vector o/ and having the form

Fi(x) = 5(x — §)5;5¢',

where x is a point of the body, &() it the Dirac delta function and &; is Kronecker’s
delta. The response of this body, obtaired as the solution of the equations of elastostatics
is given by the displacement vector and the stress tensor

u(x) = u{(x, f)”a

0’."(!) = di(x; £,
where the second—order symmetric temsor uf(x) and the third-order tensor o} (funda-
mental singular solution) express the displacement component in the i—direction and the

stress ij—component, respectively, at the point x due to a concentrated force of magnitude
F acting at the point £ in the j—direction.
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The fundamental solution pair [ui(x; £), #/(x; €)], defined for all points x except ¢ is
called the three-dimensional Layer-state and is characterised by the properties estab-
lished elsewhere.

The boundary integral equation technique is based on the Betti reciprocal work theo-
rem, which provides an integral relationship between two elastostatic states. If one of
them corresponds to a fundamental singular solution, Somigliana’s identity is obtained.
Depending on the fundamental solution used, various formulations may be available and
more suitable for solving certain problems.

Consider now a linear, elastic, isotropic, homogeneous body R, with surface d R, subjected
to body forces P(x), surface tractions s(x) and boundary displacements u(x) (boundary
conditions of Newmaan, Dirichlet or mixed type). Using the three—dimensional Layer—
state, one can derive Somigliana’s integral representation for the displacement and stress
field, in the form

wi(€) = - [, A0x ulx) dAs + [ uilxi Oax) dA,
+ [, OR(x) ava, (1)

0i(6) = - [, u(x) dds + [ o (x Oar(x) dds
+ [ ORE) V., (2)
where £ is a point of the body, x a point in the body or on the surface; u, s, F are the

displacement, traction and body force vectors, respectively; u’, o/, u¥, s are the Green
tensors as described elsewhere.

The solution of the elastostatic problem can be inferred from the boundary equation,
derived from (1)

i wle) + [, A0x Oulx) dA,
= [, vl aitx) dde + [ i OF () aV., (®)

where the tensor c;i(¢) is equal to 1/2 if { is at a smooth surface.
In problems with sero body forces, the last integral in equations (1),(2) and (3) vanish.
Thus, equation (3) becomes

WO+ [ e Oulx)dds = [ wi(x; Oolx) dA, @

which relates the boundary displacements u and tractions s.

For arbitrary geometries and complicated variations of the related functions, equation
(3) or (4) has to be treated numerically.
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8. BOUNDARY EQUATION FOR A SEMI-INFINITE THREE-
DIMENSIONAL THROUGH-CRACK

Consider a three-dimensional infinite layer R containing a traction free crack L. Assume
that the region R is embedded in an infinite plate and that a unit load F(#) is applied
at some point # in the region R but not on the boundary R. The system under
consideration and the coordinate axes are depicted in Fig.1.

Z

A

Fig. 1. Three-dimensional infinite
layer containing 2 semi-infinite through-
crack subjected to a unit load applied
at point 0.

If the load point is represented by a unit force in the k-direction,

Fi(x) =5(x — 0)6ue®, (6)
the displacement and traction field will be given by

w(x) = 6}(x; 0)e", (6)

5i(x) = #(x; 0)e*, ()
where 6%(x; #) and #*(x; #) represent the corresponding solution vectors for displacement
and traction, respectively, for a concentrated load parallel to the k-axis.

Let S., Si denote the upper and lower planar surfaces of the plate, respectively, and L
tll:e crack surface; thus R = S, U S; U L. Since the two planar surfaces are traction free,
then

/s.u,, w(x;€)8:(x) dA, =0,
and the second integral in (3) is exclusively extended to the surface crack.
Also, the first integral in (3) provides S i F e
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Jrus, i )ui(x) d4, =0,

as ¢ vanishes there (raction free condition of the analytical point load solution).
The third integral in (3), taking into account (5), has the form

[, vl €)6(x — 0)saet av, = ui(6; §)e*.
From the above and (4.2), expression (3) results in

i )81(6:0) = - [ ol(x; )8 (x;0)dAs + u{(0;6),
where summation is implied on the index s.
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