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ABSTRACT

The paper calculates first the stress field in an infinite elastic medium containing a
cut over an ellipsoidal cap by solving a singular integral equation for the displacement
discontinuity across the cut. This field is then used to calculate the stress intensity
factors along the edge of the cut.
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INTRODUCTION

The problem under consideration arises in the study of the elastic field and fracture
parameters of an ellipsoidal inclusion or inhomogeneity which has debonded over a part
of its boundary from the surrounding medium. The inclusion refers to a region of
the medium which has undergone an internal deformation (Eshelby, 1957) whereas an
inhomogeneity refers to a region of material whose elastic properties are different from
those of the medium. In this paper we will only consider a cut over an ellipsoidal cap
in an infinite elastic body and will calculate first the stress field in the body by solving
a singular integral equation for the displacement discontinuity across the cut. We will
also indicate how these results can be immediately generalised to a partially debonded
ellipsoidal inclusion. The latter problem is of considerable interest in the transformation
toughening of ceramics (Evans and Cannon, 1986). The stress field will then be used
to calculate the stress intensity factors along the edge of the cut. Solutions of two-
dimensional problems of partially debonded elliptic inhomogeneities under anti-plane
and plane strain conditions were recently reported ( Karihaloo and Viswanathan, 1985
a,b,c).
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MATHEMATICAL FORMULATION

Consider an infinite elastic medium of Lamé constants A and g occupying the volume
V and subject to the polynomial remote stress field

N
o5(@) = Y AgpyijriTiTl (1)
a,B7=0

There is a cut S in the medium over an ellipsoidal cap such that the edge 35 of the cut

described by
12 1:2 L2
()¢ (3)-(:-5) = ®

lies in the plane z; = L (Fig 1). The origin of the co-ordinates has been chosen to
coincide with the centre of an imaginary ellipsoid with semiaxes a, b,c. In subsequent
generalisation to a partially debonded inclusion, the region occupied by the latter will
be identified with this ellipsoid.

In the absence of the cut, the stress field everywhere in the medium is equal to the
remotely imposed field (1). In order to maintain this solution in the presence of the
cut, surface forces must be applied to the two sides of S. This will produce a relative
displacement v,(Z) over the surface S and a stress field, say, o%(Z) everywhere (i,j =
z1, T2, T3). Superposition of ag» and 03'- gives the field in the medium.

The surface forces which are applied to produce (&) are equal and opposite and
therefore generate a Somigliana dislocation over S whose field can be written down at
once when vx(Z) is given. When 0',7;(5:'), which will have discontinuities across S, is
added to a?j(a_:') the final field will correspond to the solution being sought if, over S,

(a?j-{-a,«*}) n;=0 (3)
where n; is the outward normal to S.

Since o}%(&) is available as an integral representation depending on ~x(Z), (3) provides
a (singular) integral equation for 7¢(Z). A convenient expression for o(Z) is (Eshelby,
1961)

= ouf
of(%) = C‘f"‘(’\’”)a_z‘; (4)
where
. 1
uf () m—_u)e"’”’l”” (5)
Cijke( A ) = A&jbre + p(bikbje + 6:¢65x) (6)

Here 6;; is the Kronecker delta, A and u are Lamé constants of the medium with v =

A/[2(A+ p)], and

Ly = [ 0(@)E = lny(e)dS() (1)
- s i}
ekPq(I) = azkazpazq - [Vépq'éz] V?
3 3]s
—(1-v) [6"’8_1(, + 51:.;5;':] \% (8)
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In (9), and elsewhere, Z; = z; — z{, latin indices take the values 1,2,3 and the usual
summation convention for the repeated indices is implied. The singular integral (7) is to
be understood in the sense of Cauchy principal value. It can be shown that (4) reduces

to

9)

oH(@) = = [ (@I Hispa &, 7)dS(27) (10)
where :
—— 0S,k
H;jpg(Z,2") = Cijie(A, 1) a;[q (11)
Here
= OGy,
Squ(fv II) = Cpqra(’\v "‘) l: (12)
oz,
and Gkr(f,;') is the elastic Green’s function. For an infinite isotropic medium
- 1 i‘k.’_i,. (3 = 41/)
7o) = E i 13
Gu(2. ) = g (e + e (13)

where R = | — 2’| and 7 is the position vector with components z;(i = 1,2,3).

With the notation of (1) the (singular) integral equation for 7x(Z) is
mmLﬁwmmMm@mwam=m@)z Agprijziohel  (14)
a,0,y=0

The solution of this equation, and the calculation of the stress intensity factors along
the edge of S is given in the next section. Here we indicate the generalisation of
(14) to the case when S denotes the surface over which an ellipsoidal inclusion has
debonded from the surrounding medium. The ellipsoidal region has undergone a stress
free transformation strain e,-Tj. Eshelby (1961) has shown that if e?-; is a polynomial in T,
then inside the transformed region so also is the induced strain ef; measured from the
untransformed, unstressed state. Using Eshelby’s notation for the stresses corresponding

to the strains e‘»Tj and e

N
ol = X Bapyijziziz3 (15)
a,B,y=0
N B
o(F) = 2 CoapyijTiTazs (16)
a,B,y=0

where C,, Byij can be expressed via B, Bij using the potentials of ellipsoids (Eshelby,
1957). We note en passant that of;(Z) is discontinuous across the boundary of the
transformed region and

[afj(out) — afj(in)] n; = —a,-Tjnj (17)
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With the additional stress fields (15), (16) the traction-free condition over S (3) now
becomes
[ of;(out) + of; + o} (out)] n;= [au(zn) +of; + ofi(in) — ag] n; =0 (18)

Although the field of;(out) is very complicated the field o§;(in) is the polynomial (16)
so that use of (18) with the form of the tractions available on the inner surface of S
greatly facilitates the derivation of the integral equation in place of (14)

o §(&)n;(Z) = ni(%) E (Capyij - Bogais H A o puiy) w508a] (19)

a,By=0
SOLUTION
Without going into detail, it can be shown that
~o5(@) = [ (@)l Hiipo(7,7)dS ()
= —2(A— p)aots.JTp,, + 2(3Aao + pa1)bi;Tpg pq

—2pao(Ti; + Tji) — 6pooTpp; — 10pay Tpg pgij
+p(en + 3“0)(1}«1.1':1 + Tpip; + Tig,iq + Tojin) (20)

where

ap=(2v-1)/[87(1—-v)], a3 =3/[8n(1—v)] (21)

and

Tie = /% )nz(z dS(;')
L )"‘(“‘ £,d5(2) ()

/ 7"(11)"’( i T;EmTadS(z")

Tkl,i ¥

Tkt imnj

Substituting (20) into (14) gives a (singular) integral equation for (&) which will
reduce to an identity in only two of the three co-ordinates z;, say in =, and z3 on Z C S.
In analogy with crack problems, we represent the displacement discontinuity Y£(Z) in
the following form:

(&) = (po——-— ) Z Y el (23)

Assuming the integrals (22) have been evaluated and equating the coefficients of like
terms on either side of (14) leads to a system of equations for determining (). The
stress field 05(&) is then calculated from (20). Next we calculate the strength of stress
singularity along the edge of the cut whence fracture is likely to initiate. It is customary
in the mechanics of crack propagation to express this strength through stress intensity
factors or displacement discontinuity across the cut. This will be done in the next sec-
tion.
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STRESS INTENSITY FACTORS AND DISPLACEMENT JUMP

The stress intensity factors (SIF) along the edge 85 of the cut S (Fig 1) are related to
the stresses at the point Z immediately outside of 65, ie. at £ C 0S;. In particular
the singular stresses o (20) control the SIF. At £ C S, the singular behaviour of
the integrals (22) is descnbed by the dominant residue of the respective integrand as
r — 0, where r is defined such that z) = z, + £;r and similarly z% with £, = cos ¢ and
£3 = sin . Without going into detail, we find that

Tie = —7Wi(Z)/Do(Z)
Tieij = —7Wieii(£)/Do(%) (24)
Titimni = —7Wie,imni(Z)/Do(Z)
where
. z3 -’03
Do) =\ + 2 i) (25)

(k

and Wie, Wieij and Wigimn; depend on the expansxon coefficients ~;; ) and involve com-

plicated elliptic integrals. The tractions at £ C 95, are
(%) = oin;(Z) = —7gi(Z)/ Do(%) (26)

where ¢;(Z) represent the scalar product of a : (20) and n; with the integrals Tke, Tke,i;
and Tke,imnj in (20) replaced by Wy, Wie,ij and Wieimnj, respectively. We now resolve
the cartesian components (26) at the point £ C 95, along the normal 7 and tangential
directions t_{,t; at this point

r(:‘) = —mn,gi(Z)/Do(Z)
r(t_x) = —wty;g:(Z)/Do(Z) e
Fl2)  — —mt2i9i(Z)/Do(Z)

Finally, the stress intensity factors are given by

(tz)] \/—_ (28)

where superscript T refers to transpose, and dp is the distance between points X and 7
(Fig 1) which is related to Dy(7) as follows:

D§(7) = 2doA($)/\/1 + a? A% () (29)

Here A(¢) = (z,cos ¢/b*) + (z3sin ¢/c?), and ¢ is the polar angle between the points
(X2, X3) and (2,,23) in the plane containing the latter, i.e. S (Fig 1). In a non-
dimensional form, the stress intensity factors are

[KmKtnKlz] [ (ﬁ)

= 2 = T
[, Ko Kyy| = (K, Koy, Ko™ /(0VI) (30)

where z, = L defines the plane containing the edge of cut 95.

The displacement discontinuity across the cut is given by (5) which may be reduced to
ut(@) = = [ %@y (@) Sus (7, )dS() (31)

71



where (vide (12) and (13))

z; TrZTiT;
J J
Sk + aoﬁ;&:s —a g

z;
T
Let A[f] denote the jump experienced by a function f across the cut S. It is easily
shown that

(32)

- 7 T
Sikj(L,2") = _QOR_’;&'.J, Fag

A[Siki(Z,2")i(2")] = —6ub(€ — &) (33)
where Eand {7 are the tangential co-ordinate vectors of points on the tangent plane at

7, and §(---) is the Dirac delta function. From (31) and (33) we arrive at the obvious
result that A[uf(Z)] = 1(&),Z C S, with 7(Z) being given by (23).

The analytical expressions for the SIF and x(Z), like the expression for the stress field
due to the cut, are therefore available as (multiple) sums for ease of numerical compu-
tation. Several numerical examples will be given during the presentation. Full details
will be published elsewhere.
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Lamé constants A, pu

Fig 1. A cut S over an ellipsoidal cap in an infinite elastic
medium showing the origin of co-ordinates at the centre
of an imaginary ellipsoid. The inset shows the plane
z; = L containing the elliptical edge of cut 9S.
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