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ABSTRACT

Well known opening mode stress intensity factor variations for
a penny-shaped crack situated close and orthogonaly to the
surface (e.g. welding pores) of a half-space are the result of
the "alternating-method" procedure and available since 1971.
The comparison of those with solutions by the "singular-inte-
gral- ecuation-method" shows a remarkable discrepancy for
points on the flaw-border nearest to the Dboundary. 2Applying
the "singular-integral-ecuation-method” new results are ob-
tained for cracks positioned very close to the free surface.
They are computed by using new exact analytical forrmulae for
recuired finite part integrals.
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IIITRODUCTION

Flaws in pressure vessels, iachine components and structural
components are often approximated by circular, elliptical orxr
semi-elliptical cracks. If the crack 1is situated in the
neighbourhood of a stressfree surface, the theoretical
analysis becomes difficult, since it involves additional
geonetric parameters describing the dimensions of the elastic
solid. The local stresses are raising with decreasing distance
between the free boundary and the crack. The study of embedded
2lanar cracks near the fres surface of a half-space subjected
to various loadings has bezen the subject of special research
in the past. A review of literature can be found by Panasyuk
2t al., (1981). OSolutions for pesnny-shapad cracks situatad
parallal +to +the frese surface of a half-space have bean
publishad by Xuzmin and Ufland, (1955), 3rivastava and Singn,
(1969), Low (1972), Lo (157¢) and Guz and llazar=nko (1935).
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Stress intensity factors for an embesdded elliptical cra
normal to the boundary in a halfspace approaching the fre
surface, ara also available. Shan and Xobayasni, (1¢73),

()
(]

solved this »roblsia using the "Schwarz-leumann-alternating-
nethod" as described o] Kantorovich and Xrylov, (1S54). The
analyses from iiisitani anéd IliuraXxani, (1c74), Isicda anad
oguchi, (13%4), have Dbeen pariormmad using thz bodly Zforce

me2thod. An approximative ilbde-I-solution for a penny-shaped
crack 1s available from Smnith and Alavi, (1971), using the
"alternating-method" too. Xaya, (1984), solved +the saine
problem by a singular integral equation.
Both authors restricted their computations t©to the aspect-
ratios h/a = 2,0; 1,5; 1,2; 1,1 (Fig.l: h ... distance from
crack center to free surface, a ... crack radius).
Comparing Smith/Alavi's and Kaya's stress-intensity factor for
the point on the crackfront nearest to the free surface
(polarangle 6= 180°) and for a ratio h/a = 1,1 a discrepancy
of 10 % 1is found. Principally <the £finite element method
(Nikishkov and Atluri, 1978; Banks-Sills and Sheriaan, 1986;
Sham, 1987; Banks-Sills, 1988) or the boundary element method
(Luo and Zhang, 1988) or a combination of both (Xeat et al.,
988) can be applied. But for cracks very near to the surface
a very fine element grid between the crack boundary and the
free surface is necessary. This leads to very small elements
in this region and therefore to a large number of elements for
the whole system. On the other hand a strong coarsing outside
of the interesting region gives rise for enormous element-
stiffness differences and hence incorrect results.

The work reported 1is an extension of Kaya's method and
contains new accurate k_-results for penny-shaped cracks close
to the free surface.

ALTERIATING METHOD (Al1)

The "alternating-method" gives less accurate results than the
"singular-integral-ecuation-nethod” due to the nature of its
solution procedure. It can be explained by the following steps
(Hartranft and Sih, 1972; Atluri, 1986):

Step 1: It 1is assumed that there exists no crack 1in the
aILspacg. The normal stresses at the location of the crack
surfaces due to the applied load are calculated.

Step 2: Now the existence of the crack is taken into account.
The normal stresses found in step 1 nust then be removed by
applying equal and opposite normal stresses to the crack
surfaces. In order to do this, it 1is necessary to find a
solution for a circular crack embedded in an infinite solid

subjected to an arbitrary normal loading on the crack surface.

Step 3: These residual stresses on +the surface of the
EaIfsvace are removed by applying opposite surface loadings on
that surface of an uncracked semi-infinite solid. The normal
stresses on the crack surface resulting from this removal of
stresses from the free plane are then computed. Due to
symmetry the shear stresses vanish.
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Alavi, (1968), used for this "freeing-process"” basic solutions
for a semi-infinite solid when a small rectangular area of its
surface is subjected to constant normal and shear stress.

Step 4: By applying opposite stresses on the crack area the
computed stresses in step 3 are erased; but this will again
cause some residual tractions on the surface of +the half-
space.

Step 5: Steps 3 and 4 are repeated until the residual
stresses on the crack plane and on the surface of the
half-space become negligible.

The final solution is obtained by superposing the results of
each iteration step.

It's clear to see that this solution-procedure is useful only
for "mild" ratios h/a and gives rise to low accuracy results.

SINGULAR INTEGRAL EQUATION METHOD (SIEM)

Now we are interested in reasonable results for ratios h/a
smaller than 1,1. The only method to our knowledge which
provides satisfactoring accuracy is the singular integral
ecuation method. Thereby the complex boundary -value problen is
reduced in an exact manner to one governlng singular integral
eguation for the unknown crack opening displacement field
W(Xn, Ya)r Xn, Y, € LL (crack area). Solving this equation
correcily one may not expect significant errors. Following the
concept of Xaya, (1984), the singular integral equation for a
semi-infinite solid with a penny-shaped crack perpendicular to
the boundary (Fig.l) located on z = 0 plane and occupying a
region specified by (x,y) € L1l can be formulated as

' o)/0 d c;d ()
% [(\J(x Yo)- dx, dly SSW%.‘/J Kk yo1,9) dxdy, = 60 v)P(x,y)

5 = x)2+ (Y 'Y)l 3/2
° 7] (xy)efn, a:x +Y7'é4 1)
The regular kernel is expressed as
KoYo; ,Y) = = L +Flx ¥0;%Y) ; (2)
v Yo; X, Y [(x,+x+2 1)7._._ Vo 7)1.]3/1 (X0 Yo %Y)
z 1 v ) -
F(x°’y°5x'y)=6{(4_2ﬂ R(R+x+x+24)* TR (3 v)

1 1 _
R+xg+x+24) * R"(R+x,+x+2q_)"]
-%[(1-211')27(,(,4- x+2q_)" -3 (x_,q_)(x;q)] } ;
R = [(xa+x+2q)" + 01 4= !‘5 .
The dimensions are normalized such by making the crack

boundary a unit circle. The load is assumed to be symmetrical-
ly distributed with respect to the crack plane.

—(4-2v)(xax+2q)[R3(

The unknown crack opening displacement w(xo, yo) is repre-
sented in the form

AFR-1—E
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Wo o) =4 Ko¥) V1 -x2 - ¥2 . (3)

The square root term ensures W = 0 on the crack boundary. The
new. unknown function g(xo, yO) is expanded in terms of a
finite double power series
Ni N2
ﬁ(XO) °)=Z Zatj o y . (4)
1=0 j=0

As mentioned the loading p (x,y) is assumed to be an even
function of y. Therefore, only even powers of y, are consider-

ed in g (x;, y,). Inserting of (3), (4) in (1) gives
N4 N2
4-
Z ZaL] [CL](xry)+ Hl]( .7)] tw( V)P(xoy) (5)
=0 j=0

C j(x,y) denoting the finite part integrals

C.&x )_%x: Wt dx, dy, 6
g I oo+ ]2 0 ©

and

H. o=\ xBV1-x2-Y2 KogvixNadxdy, )
| 'y

the regqgular integrals.

To determine the unknown coefficients .. relation (5) is
evaluated at symmetrically positioned colld&atlon points Ry

yx)e.n. K=1,2 ... M:

™ V:‘-M(‘ft) i = r4"5"h(‘ft) (8a)

with

T
‘ft=6_0 ) t= 1’2,5.9 . (8b)

To represent the strong influence of the polar angle on the
stress intensity factor kl r_ are selected as the roots of the
Chebychev polynominal of tThe“second kind, order n

n=26: Uzs(';&)=oi I, = 1Cos 'S'MTI’) 4=01,...12 (8c)
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placing a concentration of collocation points near the crack
border where the crack opening displacement rapidly increases.
Totally 767 collocation points over the half circular area are
used.

Finally a linear algebraic equation system is available to
obtain the (N +1)*(N +1) unknown coefficients alj'

N
i Z a5 [Cl](xK'yK) +H; J(XK»‘/;O 411-(1 Y)P(" Y- ()

i=0j=0
The choice of W, and W, depends essentially on the disposa-
bility of solutlons for the finite part integrals C..(x,y).
Therefore special con51derat10n was focused on the derlvatlon
of exact formulae for (x,y), i=j§j=0(1)16. The general
solution is of the form (10

Cis joe=-T ('1+L+J)x‘\/J +
L3 (R+£-2) (R+t-q.V2 hR+l-24 & m
Y Y Y 2 22 A
k=0 1=0 4=0 @=0 ¥=0 m=0 n=0
(£22-R) (k+l-q.=wen) (V+L=2vtn)

2™ |+ E2uV+2m=2n_I-L+V+2n (10a)

where

A ()BRzE (R 2P (Rt 82),

(k+ ‘C,.-Zy.) B (2k+l-§et -v+1 ,V‘+é+4 ) (@;‘ ) (r:) ) —_—

B(a,b) denotes the Beta function:

Cea).["(8)
B(a,b)=——r(a+b) . (11a)

Using the well known relation for the Gamma function

|-|( +_)_ eznm! v

(11b)

|2_?.n -
the Beta function is expressible as 1T (2&'1)'-Tr(ZL-1)
m+n+1 '=1
. T L
mzn: (m*' '"*z) 2m+n+(m+n)/z (m+n)/Z

T @ (11¢)
t=1

AFR-1—E*
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This special formulation allows a standard FORTRAN DO - Loop
without an integer-overflow. Following this manipulation
e2quation (10b) is of the general form

Tz A

E . . (12)
/\ ‘zﬂ /\

Now A' consists of products of binomials and is of INTEGER-
Typ. Coding equation (1l0a,b) with the help of (llc) in a
standard manner would again lead quickly to an INTEGER
overflow (e.g.: i=1, j=5; i=2, j=4; i=3, j=3). To avoid such a
difficulty special SUBROUTINEs, documented in a recent report
(Mayrhofer and Fischer, 1988), were written with no restric-
tion for the wupper 1limits of i and j. The output of the
FORTRAN program are the exact analytical formulae for the
finite part integrals Ci.(x,y); they are also listed in this
special report for the values i=j=0(1)16.

In this paper Nl = 8, N, =5 are fixed. The regular integrals
(7) were solved using & standard integration procedure. The
overdetermined equation system (54*767) was solved using the
method of least squares.

WNUMERICAL RESULTS

In Fig. 2 the stress intensity factors k_. found by the AM are
compared with those evaluated Dby the g&EM. For ratios h/ac¢
1,2 a significant deviation of the AM-results from the
SIEM-results can be observed. Generally the AM-results are
smaller for angles between 8 = 100° and 180°. For ratios h/a<
1,1 satisfying kI values can be found only by using SIEM.
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Fig. 1. Penny-shaped crack near the surface
of a half-space.
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Fig., 2« Stress intensity factors for a penny-shaped

crack approaching the surface of a half-
space. Crack surfaces under constant pressure.
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