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1. Introduction

In recent years crack tip stress and deformation fields for elastic-plastic crystals have attracted
scientist’s attention.

Rice and Nikolic [1] have firstly presented the analysis of elastic perfectly plastic crack tip response
ol crystals in anti-plane shear. The nearest work given by Rice [3] shows the crack tip stress and
deformation fields for tensile loaded perfectly plastic crystals. The crack tip fields are assembled
by four angular sectors and shown to change discontinuously from sector to sector for stationary
crack. The asymptotic solution of growing crack consists of also four angular sectors.

But as pointed out by Rice [3], the asymptotic solution is not unique. This paper presents the
analysis of crack tip stress and deformation fields for tensile loaded elastic-perfectly plastic crystals.

Ihe basic equations of plane strain problem for the elastic-perfectly plastic crystals with double slip
systems have been presented in the basis of three-dimensional flow theory of crystal plasticity.
Using these equations, the stationary crack tip fields are analysed for tensile ioad.

Ihe fields are assembled by three angular sectors. The stress and displacement fields are fully
continuous.

the assembly of growing crack tip field involves five angular sectors. The present solutions contain
# free parameter and give a family of crack tip fields.

Pinally the application of these solutions of the FCC and BCC crystals are considered.

Basic Equation

tor the sake of simplicity, we start from the analysis of double slip plane model of crystal
groposed by Asaro [4].

A shown in Fig. 1, the plane model of double slip involves two slip systems: the primary slip
#vstem and the conjugate slip system.
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(1). Yield Condition

According to the Schmid rule, the yield condition for elastic-perfectly plastic crystals can be

expressed

@ - 7 =7,

1)

where () s the resolved shear stress of the oth slip system, Tg"‘) is the critical shear stress of

the «th slip system.

In the polar coordinates (r,8), we have
M - - ;—(ae ~o,) sin(8-0,) + Trg CO2(O=4o) »
@ - -;—(oe ~o,) sin(8+®,) — Trg COR2(B+By) -
(2). Constitutive Relation

The constitutive relation of crystas can be taken in the form,

) v . P
D“ = E oij . E sijokk * Dij N

where Dij is the strain rate tensor. Dg is the plastic strain rate tensor,

n
p’ - E p@ 5 n=4,
a=1

here ‘;'(“) is the slip shear rate of the «th slip system.

3. Stress and Deformation Fiel¢és Near a Stationary Crack

22

(23)

(24)

As shown in Fig. 2, the crack tip zone is assembled by three angular sectors. The domains A and

C are plastic zones and the domain B is an elastic zone.

Consider a pure mode I crack. Due to symmetry, we only consinder the upper half plane.

In domain A, two slip systems will simultaneously attain yield. From the first equation of formula

(2.1), we obtain

Tc

26 + A 5
2 sin2¢o T 5 ]]

Similarly we obtain (in domain c),

k*
F = —[1-cos28] , k* =
2 [1-ees26] sin2¢,
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3.1)

(32)

In clastic zone B, we have
F = k_* * l H
=3 [1-cos28] + Bj [6-B - 2—sm2(B+B)] 5 (3.3)

iere B = m-B, B is the angle between the boundary I'g and the crack face.

Irom the complete continuity of stress components on boundary T 5, we find
k* k*
k* K 1
5 (Aq+ cos2a) = > (1-cos2«) + Bf [a+B — T = 751n2(a+3)] 5
—k*sin2« = k*sin2e + B [1 - cos2(a+B)] , (3.4)

-2k* cos2a = 2k* cos2a + 2Bj sin2(a+B)

We have

’

« = B, Bj = -k'sin2«

Ay = 1+ 2m-2a)fsin2a 33

Since the yield constraint condition should be satisfied in domai o = B2¢,
y n in B, hence we have o’

4 Stress and Deformation Fields Near a Growing Crack Tip

I'he p_ossxble option is shown in Fig. 3. The assembly of sectors involves five angular sectors. The
Jomains A and B are constant stress zones; domains C and D are elastic unloading zones; d'omain
boas ulsccondary plastic zone. The velocity discontinuity may occur on boundary T, T ’and I
As pointed out by Rice [3], the velocity discontinuity ray must have the directioﬁ, ofB;li) lar%
traces or normal traces of slip plane. Hence we have e
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B = Max (4,5 ~ &) .

) n
When ¢0 2 4— , we have

I'hus the velocity jump is slip-type shear on Tg but kinking-type shear on TA-
I'he stress function of an asymptotic field can be expressed as

_ 2
¢ r“ F(9) , 1)
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%— [Ay + co28] , in domains A and B

C* C' . . .
L Fy(6) + L 8+ Cq+Cy [1-cos(8-B)] + Csg sin2(6-8) , in domain C
4 4
F(8) =
Dj D} _ ) _ e cp
Fy(8) +— 6 + D3 + Dy [1-cos2(8-7)] + D55m2(9—7) , in domain
4 4

k* : :
L 2 [1-cos28] , in domain E

4.2)
and
Fy(8) = (1-cos28) Lnsir — 8 -sin28 — cose , 4.3)
Due to continuity of stress components on T'g, we find
C3 C3
k* 1 2
Cy = -Z—'(Kl + cos2B) - 3 Fy(B) — 2 B,
G (4.4)
k* 1 .
= = - — - F(B)) ,
Cy = ~— > cos 28 ” (LnsinB S( ))
e Cf K® G
C5=—-2—sm23—4- 2 3
The continuity of stress components on I'ry results in
D3} Db
k* 1 2
Dy = E——(l—c0327) - —4—Fs(7) -2 ¥,
* Dj _ 5)
D, = ;—cos(2'ﬂ - [Lnsiny - Fs] »
kDI FEO a1
Dg = E—sm27’—7- 2 T3 5
From the stress continuity of I, it follows
*_T)* *_DX -
i il U Lo A (C3-Dy) + Cy [1 — cos2(B-B)] + Cssin2(B-8)
s
¥ i = 4.6
- Dy [1 - cos2(B- 7] - Dgsin2B-7) = 0, (4.6)
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1— (C} - D)) FB) + ;— (C3 - D3) +2C, sin2(B - B) + 2Cs cos2(B - B)

- 2Dy sin2(B - 7) - 2Dg cos2(B-7) = 0 , 4.7)

(C] - D) (LnsinB - Fy(B)) + 4C,4 cos2(B - B) - 4Cgsin2(B - B)
- 4Dy cos2(B - 7) - 4Dg sin2(B-7%) = 0 , (4.8)
OnTIc, velocity jump occurs, we have
@ - - T. , (or M - - T (4.9)
On the other hand, the normal velocity component must be continuously across the Tc . it yields

i sinB - C3 cosB = Dj sinB - D3 cosB , (4.10)
The calculation is carried out for $ = 54.74°.

The calculation shows that the correct solution is obtained for each ¥ when 9.009° < v < 127°.
I'he solutions satisfy all asymptotic equations and full constraint conditions.

Fig. 4 shows the stress distribution along a circumferential direction for y = 9.009°.

5. Application on FCC and BCC Crystals

I'he crystal axis coordinates for FCC and BCC crystals have been shown in Fig. 5. The Xe Yo
and Z_ axes are along the [100], [010], and [001] directions respectively. The fixed Cartesian
coordinates 0XYZ used in the previous sections are also shown in Fig. 5.

I'he equal slip along the [1?0] and [0?1] directions on the slip plane (111) will result in slip along [151].
and yield plane strain deformation. We have,

P 2 2) .2
oF - @ p®) 5@

~

1 2 2 2 2 2 2)) -2
L (0P 0P 0, P8 @@ nS )5
i «_g [Ta) 0. 2'(2)] DL 5e@ 5@ =i
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where

: ~P(2) } _;_ (E(Z) @2(2)+E(2) @E‘(Z)) i
(52)
‘ ,*1‘(:) em 1§2) A T(Z) '

Similarly for slip systems (TlT) [011] and (-1_1'1_) [110], we have

P 1) .1
D =3 g( ) 7( ’ ) (53)
i here .
. . Fig. 2 A
# Fig. 1 Double slip pl & ssembly of angular sect
. 1 1 1 1 p plane model i ctors
P(l) . = (E(l) ® ‘,.‘,( ) . E( ) ® m( ) ), (5.4) . of a crystal. for a stationary crack.
From Egs. (5.1) and (5.3), we find - o
: Te
P 1) .01 2) (2
o - /3 @()7()’5()7( )) 5)

In comparing Eq. (54) with Eq. (24), it can be found that the problem of FCC crystals discussed

here is equivalent to the corresponding problem of double slip crystals, if we take «3"73(1) and

\/3'7'(2) considered here to be equal to 7"(1) and 7'(2) of that considered on double slip crystals.

Therefore the above results can be immediately applied on plane strain crack problems of the FCC

and BCC crystals.

Fig. 3 Assembly of angular sectors near
the growing crack tip.
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