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ABSTRACT

The near-tip stress and deformation fields of a steadily growing crack are
studied for an elastic-plastic solid with power-law work-hardening. It is
shown that the same set of governing differential equations for the field
quantities applies whether or not the plastic strain rate is assumed to be
coaxial with the stress deviator, i.e, whether or mnot the wusual plastic
normality rule is wused. Assuming continuous displacement and velocity
fields, conditions of discontinuity are analyzed, and by means of numerical
results it is shown that stress discontinuities do indeed exist when the
plastic normality rule is relaxed.
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1. INTRODUCTION

The near-tip stress and strain fields of a dynamically growing rectilinear
crack in an elastic-plastic solid with power-lawer work-hardening have been
discussed by Gao and Nemat-Nasser (1983), for the elastically and
plastically incompressible plane strain case. The assumption of
incompressibility reduces the number of independent strain rate components
(as well as strain components) from three to two, for plane strain problems.
This has farreaching consequences for the nature of the solution to the
corresponding governing equations. In particular, it allows the formulation
of the near-tip field quantities for a broad class of elastic-plastic
materials, with or without the assumption of the normality rule, in terms of
exactly the same differential equations, by slight modification and
interpretation of a single parameter, namely the Mach number. For elastic
perfectly-plastic solids, this has been recently shown and exemplified by
Nemat-Nasser and Obata (1988). The purpose of this research note is to show
that, for elastic-plastic solids with power-law work-hardening, essentially
similar conclusions can be obtained by proper modification and redefinition
of the Mach number.
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One particular consequence of our analysis is that the near-field quantities
can indeed admit discontinuities for plasticity models which include the
vertex structure of the yield surface associated with slip-induced crystal
plasticity. Conditions associated with discontinuity surfaces are briefly
discussed, and discontinuity relations are obtained for incompressible
materials in plane strain. Then, assuming a continuous velocity field,
numerical results are obtained, which illustrate the existence of
discontinuous stress fields. We also briefly examine more general
properties of discontinuity surfaces when the velocity is discontinuous.

2. POWER-LAW HARDENING WITH NONCOAXTALITY

We denote the strain by ¢, the stress by o, and the stress deviator by s,
and let p and v be a pair of orthogonal unit deviatoric second-order tensors
defined by

E Isl = (5:5)1’, (2.1)

o

B o=

1

piv o= lpl = vl =1, trp = tryv = 0. (2.2)
The plastic strain rate E:_p is then defined by

F-dprar (2.3)

=

As is seen, the first term in the right-hand side is coaxial with the stress
deviator and corresponds to the plastic strain rate in the usual J,-
plasticity theory. The second temm gives a plastic strain rate component
which is normal to the stress deviator. This term, therefore, does not
contribute to the rate of plastic work which is given by

€ =g = 5P = X3l (2.4)

We consider a power-law work-hardening defined by

e-jédc-soly". (2.5)
Then it follows from (2.4) and (2.5) that
R -2 9
X =né 81" 55 Isl. (2.6)

The total strain rate now is given by the sum of the elastic and plastic
parts, as

e P2 lpeay (il -aP -0, (2.7)
where 3/2E = 1/2u for elastically incompressible problems, with E and u
being the Young modulus and shear modulus, respectively. In the sequel, we
examine the relevant field equations, using the notation of Gao and Nemat-
Nasser (1983). Our objective is to show that the same basic differential
equations apply to a solid with constitutive relations given by (2.7),
whether n 1is identically zero or 1is non-zero, i.e., whether or not the
plastic strain rate is normal to the J,-yield surface.
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3. FIELD EQUATIONS
i 1 under plane strain
which propagates steadily
t;;ig:::azlia;:owth speed V is constant, measured in the spatially

fixed Cartesian coordinates (x,y)- Let (r,§) be the polar coordinates
vi k tip, as shown in Fig. 1. For steady state
moving with the crac

deformations, the time derivative becomes

Consider a s
conditions.

o .1
a v inv—g—-cosﬂ—a—), (3.1
at CE rdfd ar

and is denoted by superposed dot.

y

k Growth with stationary coordinates (X,Yy)

: Crac
BLE- moving polar coodintaes (r,9)

and

ion by w.
Denote the mass density by p, the velocity by Vv, and the accelerat y W
en
equations of motion are
i 3049 99rg = 20.9

sommis - p Wy, Org = %or>
= PV rdé * Br r 0

do.r 99 . Irr-%0
—_— =
ar rdé r
i re
where components in the moving r,#-coordinates a

conditions on the crack surfaces are

(3.3)

aol.-a”-OonD-tn.
The strain rate ¢ is defined in terms of v as ,
av — vy Vg ‘ - 1-.( av, i\_r, RO (3.4)
Err 7 -a—r': €0 " 739 Tt €gr = fro T 2 “rds Idr T

i : £ o0 = here the
of the material requires tre = err+ €99 0, w

bilit
B yby constitutive relations (2.7).

strain rate is given

3.1 Order-of-Magnitude Estimates

From the incompressibility condition, Gao and Nem

the displacement potential

(3.5)

U = 2 (Inr)® ( (Int)£(0) +5(8) ) + -

From this it follows that

(3.6a)

0e) = 0( (1n0)*"),

< ces e
and from the power-law work-hardening condition, we ha

335

(3.2)

used. The boundary

at-Nasser (1983) suggest



0(&) = 0(e:0) = 0(Jg|™.
(3.6b)

Hence,

o(g) _ O(Eum-n) - o( (lnr)(dol)/(n-U y. -
.6c)

From the equations of motion, on the other hand, we have
,

0(7-9) = o(L (1nr) Ny L o). g
= .6d)

Hence, in view of (3.6a), we set

o(w) = o(+ (1nr)*),
(3.6e)
and obtain
1
6‘ - —
n-2°
A A (3.7)
Thus, the order of A and n becomes
o) = o(m = 0P = o( % (1.
A ; £ = (3.6f)
Now, since Ap = As/|s|, we set
% ~
|§| =2 + .., TgT =n + 5 (3.8)
note that O(A) = O(n) = 0(1l/r), and rewrite (2.3) as
ép—A§+n|§|v+... 5
= (3.9)

Mor i 5
caoe°:§§' ;:3:? ;he leading term of |s| becomes independent of # as sho b
THeR, EE5 1t a isser (1983), the ~leading terms of s and |s|u are e:zaly
' p=1, we get pip = i ~ ~'= E
i v omep T = g Bip 0, and hence, p is parallel to v. Indeed

Her = = Hgg = - COSB/J2,  ppy = pg, = siny/J2, (3.10)
Vep = - Vg = siny//2, Ve = Vgr = cos$/J2,
with $ = %(6) and |u| = |v| = 1, it follows that
. \
b= ;sin&iﬁ’u F e .
= (3, 11)
Thus,
s = Is|p+.. = Ysind v’ |s|v +.. .
- s|v (3.12)
Therefore, (3.9) becomes
‘P

V = .
. =/\§+(;sin0v/)')1ns+..‘. (3.13
s -13)

Since O(n) = O(1/r), we have O( (Vsind$'/r) 'n) = 0(1). Hence, we set

v . - —
(;51“0'45')1'7-7}, .L'_L+;
2u 2p ’ (3.14)

and define the Mach number by

|98}
“w
o)

'y -v[ﬂ.]”. (3.15)

3.2 Governing Differential Equations

With the modification of the Mach number, (3.15), it can easily be shown
that the near-tip field equations are exactly the same as those reported by

Gao and Nemat-Nasser (1983), except for the fact that M must be replaced by
M*. In particular, if we define the leading terms of the near-tip field

quantities by

U =) (Elnr+g), (3.16)

Orp = (lnr)‘(a - rcosy), Ogg = (1nr)‘(a~+rcos¢), Trg = (lnr)sfsin¢,
where £, g, 0, $, and 7 are functions of 6§, we arrive at

f = Asin28 + B cos2d + E, r = K (= constant). (3.17)
Normalizing the field parameters as

(a,8,0) = & (145) B,B,C), A= oh Eeh (3.18)
we obtain a set of governing differential equations for ¥, A, and Z:

(3.19)

($'-2)F - MG =0, Z'F- M2 (Gsing - (B+C)F) = O,
*2

= % (B+C)sin(¥-0)) 1,

[ 2cosp(Acosd- (B+C)sind) ) +M*2sind (Asin($-28)-2
where F and G are given by

F = cos’p - MPsin?d, G = Acos(-28) - 2 (B+C) sind cos(¥p-9). (3.20)

These equations are identical with those reported by Gao and Nemat-Nasser

(1983).

4. DISCONTINUITY SURFACE

at § = §g as shown in

Suppose that there exists a discontinuity surface, S,
strain,

Fig. 2; across S, the displacement is continuous, but the velocity,

O

Fig.2 : Dicontinuity surface
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and stress fields may be discontinuous. The strain tensor, ¢, is given b
» £, Y

the symmetric part of the dis h
placement gradient. D i
by [], we have the kinematic conditions? FRASIRE B Jhimp acxows. 5

[ee] = O, Vs [‘:rg] - [V,.], Vg [an] - [VQ], (4.1)
and the continuity and equilibrium conditions:
[m] =0, m([v] + [gr] =0, m[vg] + [04] =0, (4.2)

where m = p(Vg-vy) and Vg = Vsi
s sind;. Since the mat i
[tr_c_] = 0, and hence (4.1) and (4?2) lead to maEsEial X% incempEtesdbile.

[egp] = 0, [vs] = O, [oge] = O. (4.3)

Therefore, ¢ v,
9¢» Vg, and oy are continuous across S. On
o may be discontinuous across S. T e S

Assume that the radial velocity component is continuous across S, i.e

= 0. Then, from (4.1) and (4.2), it follows that the strains a;xd t.:r;ctizal

:;e continuous across S. However, the stress component o m bs
scontinuous. Substituting the functions % and T from (3 lgr 4 .

continuity of the tractions, i.e., e¢y-[g] = 0, we obtain 118 inco che

[siny] = 0 and [Z] + cosyp = ) at § = 4s. (4.4)
Hence, the discontinuous stress component is given by

1

g [ore] = [2] = - cosy. (4.5)

g:iggﬂzt'\e ?znditiog A = 0 for the positive rate of plastic work from the
inuity condition (4.4) we obtain a uni i ,

que solution for T and i
tter;:’:s of parameters A, ?, C, and M. Figure 3 shows the variation of I axfduv;
\;1 respect to § for M = 0.3, A = 0.15, and B+C = 0.12. At ¢ = -0.61 and
s = 0.69, there exist two discontinuity surfaces on which the sst:ress.field

"

m

-0.6l1 0.69

2

/ A<O
17, %
(7
//
N .
0 g

Fig. 3: (a) Variation of p with respect to the polar angle 4
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— T
= - 08l
Fig. 3: (b) Variation of Z with respect to the polar angle ]
even though the velocity and strain fields are continuous.
When the velocity field is continuous, then the internal energy density e
(defined by pe = o:¢), is also continuous across S, since the conservation
of energy requires (all thermal effects are neglected)

T 1 9
O oe9 r

is discontinuous,

mle+iivi?] + (y(ere) ) mmleryvil + [veorl = 0. (4.6)

Then, [v] = 0 and its consequence [o.] = [0,] = 0, lead to [e] = O.
we conclude that the continuity of the displacement and velocity

Therefore,
across S leads to the continuity of the strains, tractions, and internal
energy on S, except for the stress component o.., 1i.e.,

4.7)

(u] = [v] =0~ [e] = 0, glg] = 0, and [e] = 0.

On the other hand, if it happens that the velocity 1is discontinuous, then
these field quantities may not remain continuous across S. Indeed, although
[vy] is zero due to material incompressibility, nonzero [v.] leads to

Vs [€ge] = [ve], [ogr] = -m[v.]. (4.8)
It should be noted that for (4.8) to hold, beside discontinuity in ¥ or =,
different values for parameters of U (i.e., A, B, and C) or of |s| (i.e, K)
may have to be admitted across S.
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