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ABSTRACT

Direction of initial crack extension in an elastic-plastic gitua-
+i on under mixed-mode loading has been predicted through incre-
mental finite element analysis from the crack-tip stress-strain
field using the criteria of maximum tangential stress (MTS),
maximum tangentigl strain (MTSN) and maximum tangential princi-
);al stress (MTPS) of the linear elastic fracture mechanics(IEFM) .
he prediction of direction of crack extension as per these cri-
teria remain unchanged at the various stages of loading. The
glastic zone at the crack-tip develops symmetrically about a

ine whose inclination with the crack is close to the initial
crack extension angle.
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I NTRODUCTION

Direction of initial crack extension 8¢ and critical load P at
which crack initiates are the two important unknown in any mixed-
mode fracture study. If the deformation is linear elastic, 6c¢
can be predicted using the criteria of maximum tangential stress
(Mmsg (Erdogan and Sih, 1963) , strain energy density SED) (Sin,
1973) , maximum tangential strain (MTsN) (Wu, 1974) and maximum
tangential principal stress (MTPS) (Maiti ana Smith, 1983).

Most metallic structures give rise to plastic deformation around
the crack-tip upon loading and the situation falls more within
the scope of elastic-plastic fracture mechanics (EPFM). In EFPFM,
the condition for the onset of crack extension is, many a times,
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defined in terms of the crack opening displacement (cOD) and J-
integral. These parameters have been mostly used to_deal with
mode I loadings. Very few studies concern elastic-plastic pro-
blems under mixed-mode loadings. Otsuka et al. (1957) performed
a mixed-mode fracture test on a cracked tensile strip specimen
of carbon steel and measured COD and stretched zone width (SZW)
of an angled crack. They observed a correlation between the S2#%
and COD and proposed a COD tased criterion for mixed-mode frac-—
ture. Application of J to mixed-mode fracture of ductile mate-
rials has been attempted by many authors (Cotterell et al., 1982,
Ahmad et al., 1983, Kighimoto et al., 1980, Sakata et al., 1985) .
Cotterell et al. (1982) performed a mixed-mode plane stress duc-—
tile fracture test on staggered deep edge notch tension speci-
mens of low alloy steel and demonstrated the applicability of J.
Ahmad et al. (1983) carried out an investigation of crack initia-
tion under both static end dynamic loading in three point-bend ,
specimens with a slant crack and pointed out the usefulness of J
approach (Kishimoto et zl., 1980) for the purpose. They however
indicate that more experiments are reguired to arrive at any
firm conclusion. Sakata et ale. (1985(); have done experiments and
finite element analysis for an, angled crack problem in a compact
tension specimen. They found J useful for the prediction of the
fracture initiation load. All these studies deal with the pre-
diction of Pe and no importance has been attached to the predic-
tiom of 6¢c. This paper is intended to examine whether the direc-
tion of crack extension 6¢ can be predicted using the criteria
of MTS, MTSN and MTPS, which has so far been used within the
framework of linear elastic fracture mechanics (LEFM). The in-
vestigation ig based on an elastic-plastic finite element ana-
lysis. Some related observations on the crack-tip stress-strain
field, plastic zone development and crack edge profile are also
presented.

ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS

The finite element analysis was done using a package based on an
algorithm of Yamada et zl. (1968). This algorithm is based on
the tangent stiffness method. It uses small and varying incre-—
ments of load just sufficient to yleld a new Gauss point.

The specimen chosen for the analysis and other associated details
are given in Fig.l (inset) . This configuration and material
have been used by Sakata et al. (1985). Mises' yield criterion
and plane stress condition are assumed. The stress-strain rela-
tion of the material is idealised by a Ramberg-Osgood relatimm.

8-noded rectangular elements are used to discretize the whole
body except for the crack-tip zone, where quarter-point crack-
tip elements are used. There are in total 200 elements and 680
nodes. The smallest element size at the crack—tip is 2.8 /. of
crack length 'a'.

RESULTS AND DISCUSSION

Fig. 1 shows the variation of load per unit thickness (P/B) with
deflection &. & is indicated in Fige. 1 (inset). The load-

560

deflection plot is compared with the experimental and finite
element based results of Sakata et al. 1985) . The comparison
is very good and it indicates the accuracy of our finite element
analysis. Fige 2 shows development of plastic zone at different
stages. It is seen that the plastic zone developed is symmetric—
al about the line which is lying at an angle with the crack line.
J against COD is plotted in Mg. 3 for four different contours.
Initially there is not much difference in the J-& plots but as
the plastic zone develops J becomes slightly path dependent.
Crack edge profile at different stages of loading are presented
in Fige4. The crack edge profile is asymmetric and upper sur-
face moves more than the lower surface, which is in agreement
with the observatims of Sakata et al. (1985). Figs. 5, 6 and 7
gives the variations of tangential stress og, total equivalent
stress, tangential strain €g and shear stress (yp about the
crack-tip at the three different stages of loading, 1st,60th and
100th. These plots show that the point of occurrence of the
maximum or minimum of a parameter is constant for all the stages.
Again the angle ® made by the line of symmetry of the plastic
zone is very nearly the same as a,the angle of crack initiation,
as per the criteria of MTS, MTPS and MISN. Therefore a can pro-
bably be predigcted from a plot of the plastic zone, or a plot of
op (or €9, or (rg) against 6 at any step of loading. Even a can
be predicted from the first load step, which is fully elastice.
Unfortunately, no experimental result is available on 6., because
of which it has not been possible to check the accuracy of our
predictione.

CONCLUSION

(1) Direction of initial crack extension 6, for an elastic-
plastic mixed-mode situation can be predicted from an
elastic analysis.

(2) The criteria used in linear elastic fracture mechanics for
prediction of 6¢s eegs the criteria of NTS, MTSN and MTPS,
gives almost the same value of 6¢ in case of a mixed-mode
elastic-plastic problem considered here.

(3) Under mixed-mode loading plastic zome develops at the crack-
tip symmetrically about a line whose inclination with the
crack is found to be equal to the crack initiation angle.
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Figure 6 Variation of (a) tangential stress 0, and shear stress
T,g vs 6 ,(b) total equivalent stress Oeq. vs 8 on
circle of six difterent radii around the crack tip in
the 60 th load step.
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