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ABSTRACT

We show that the simple one-dimensional BCS-Ohr model of fracture can be
generalized to relativistic steady state motion and can serve as very
simple and analytic zero order approximation for dynamic fracture and crack
arrest problem.
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INTRODUCTION
Recent studies of crack arrest and other aspects of fast fracture as
reviewed (Magata et al., 1987) in the continuum approximation have been

based on time dependent creep constitutive laws which yield the crack tip
fields of the inverse square root variety only when the power of the creep

law is less than 3 (Hui and Riedel, 1981). In this work, the continuum
approximation is used right down to the smallest dimensions at the crack
tip. On the other hand, other dislocation-based models of fracture have

emphasized the fact that dislocations are present in small numbers when
viewed on an atomic level at the crack tip, and dislocation free =zones
(Chang and Ohr, 1981, Weertman et al., 1983) characterize the innermost
crack tip regions. Although there exists some controversy about the
presence of dislocation free zones, and the role they play in fracture, we
believe they should not be ignored in modeling of the crack tip behavior.
In particular, we believe that the fracture toughness laws for fast crack
growth and arrest should incorporate ideas about the dislocation free zones
in order to assure that the proper physics of the crack-dislocation

interactions have been incorporated in the final models. In addition to
the dislocation shielding at the crack tip, cleavage cracks also usually
bifurcate onto neighboring parallel cleavage planes, with ligament

formation, which also leads to a kind of shielding of the local crack tip
stress intensity factor.
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It is the purpose of this paper to develop the relativistic equations which

govern crack shielding. In particular, we will generalize to steady state
relativistic velocities the one dimensional BCS model (Bilby et al., 1963)
(in the Chang and Ohr modification (1981), which serves as a zeroth order
approximation for all dislocation-crack shielding modeling. In later

investigations, we will pursue the consequences of dislocation free zones
and ligament shielding for fast fracture and arrest, and compare such
models with the continuum based case. Our argument focuses on mode-I1I
moving crack and screw moving dislocations in the steady state condition
because of the simplicity of that analysis, but the results are applicable
in a qualitative way to the more physical mode-I problems.

FORCES ON ELASTIC MOVING SINGULARITIES

In this section we shall develop the necessary elastic analysis for the
combined crack-dislocation configuration, which is in steady-state motion
with velocity v along the x; axis. The wave equation in antiplane strain,
characterized by displacement ug,

az_ 32 i
[ax§ + axg] S T &

is satisfied by the substitution

(2)

d%u
X, = X; — vt, x, = X,, ez v2

Here we have dropped the subscript 3, because we shall be concerned only
with antiplane strain. Thus the solution for a set of uniformly moving
singularities is also the solution of the Laplace equation,

+35=0, (3)

with v2 = 1 — v2/c?2 = 1 — B2, where f = v/c.

In analogy to the standard mode-III time-independent analysis, we introduce
the stress function n(z) such that the displacements and stresses become

u = (2/w)Im(n(z)],

o = (1/y)og5 + 10,3 = n',

z = X; + iyx,, 4)
where p is the shear modulus, and n’ is the derivative, dn/dz. The force

on a moving singularity in 2-D elastic medium derived elsewhere (Lin and
Thomson, 1986a) from the general Atkinson and Eshelby expression (1986) is

f, = (4my/u)Re(Res[n'(2)]2?), (5a)
fu = — (4my?/p)Im(Res[n’ (2)]?)
sl LRI (5b)
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The force components f, and f, on the moving singularity are calculated in
terms of the residue at the singularity.

When applied to a crack, the f, force is not a physical motion for the
crack because crack branching is not a self-similar translation of the
crack (Lin and Thomson, 1986b), but (5b) can be applied to a dislocation
and corresponds to a transverse dislocation force. The solution for a
dislocation in steady-state motion in the x, direction is

2n' = pb/2nz + 03,, (6)

where o5, is an externally applied stress. Direct application of (5b)
gives the result

f, = —bos,, (7)
which is the classic Peach-Koehler result (Hirth and Lothe, 1982).

When a moving crack under an applied load interacts with N moving
dislocations at (j, the field at z is known (Lin and Thomson, 1986a)

K(v)

, pbj 1 _ 1 ]
n'(2) =g n+§m§[7z—-7§ TG ®

where the applied dynamic stress intensity factor K(v) is related to the
static one by

K(v) = J1 -8 K111(0), . 9)
which was obtained by Eshelby (1969). The local stress intensity factor

k(v) and the dislocation-induced stress intensity factor Kg(v) associated
with (8) are given as

k(v) = R(v) — Kg(v) (10)
. ubi 1
Kg(v) = — v %y‘g 2/2nz 3‘3 Eﬁ[m
_ 1
z i+ gj *
_ pbey( 1 1 ]
5 sl )

ONE DIMENSIONAL RELATIVISTIC BCS-OHR MODEL

In our one dimensional model, a moving crack under an applied load
interacts with N moving dislocations, distributed on the x, axis.
Substituting (8) into (5a) and setting fj = x;, the force on the moving
crack tip and the dislocation can be determined. For the crack,

£y = 55— 2y () (an
K(v) = K(v) —Kq(¥) (12)
AFR-1—AA
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b
Ka(v) = 3 57’}_]- . (13)

For a dislocation at xj

. _ biK(v) _ yub? , bibj X3
faxiv) = T ~lmmp T} Telng —wp AR (42
—bjog(xi, V),

where K(v) is the applied stress intensity factor, bj is the Burgers vector
of a reference dislocation, and bj is the Burgers vector of all other
dislocations. The sum over j is a sum over the dislocation distribution.
' denotes a sum over all dislocations except that for which the force is
being calculated. The local stress intensity factor, k(v), for the moving
crack is a shielded value relative to the external stress intensity when
the Burgers vectors have a positive sign. The surface tension, 7vg(v), and
friction stress, og(v), to the dislocation motion determine the kinetic law
for the crack tip velocity and the dynamic law for the moving dislocation.
In steady state, the value of f.(v) for the crack and fg(xj,v) for each
dislocation goes to zero.

We are now in a position to derive a dislocation shielding theorem for the
crack when all defects are in steady state motion with a velocity v. The
force exerted on the total dislocation pileup is the sum of (14) over all
the dislocations. Carrying out this sum with the help of (13) yields

K(v) Kg K
Fg = B fa (x3,v) - uf"’) 3 .. Kt (15)

2py
- igl bj of(xi,Vv).

Combining (12) and (15), we have the dislocation shielding theorem sought
when fg (xj,v) =0,

K2(v) — k2(v)

= -8 by og (x5.v). (16)
Equation (16) is a general result in the sense that no assumptions are made
regarding og(xj,v) and in order to obtain more specific results the form of
this function must be specified.

In the rest of this section we will replace the discrete distribution by a
continuum distribution, a(x,v)dx derived by smearing the discrete
dislocations in the pileup into continuous distribution of dislocation.
Let W be the dislocation free zone, which is the distance between the
moving crack tip and the nearest dislocation in the pileup. Let R be the
plastic zone size, which is the distance between the moving crack tip and
the furthest dislocation in the pileup.

In steady state, the force balance equation shown in (14) gives Cauchy
principal-value integral
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X R ; . ’
of (x,v) = é:i +l ;—ifg—[%%x—",)]dx : (17)

An alternative equation is characterized by the local-k when (12) and (17)
are combined to eliminate K(v),

k(v) Ry [ [ax'W],. .
qECOV) = Tt J; 2 (s (e

Equations (17) and (18) are the standard singular integrals
(Muskhelishvili, 1977) and the results have been summarized in a useful
form (Head and Louat, 1955). The uniqueness relation (Head and Louat,
1955) for a distribution A(x), which has zero values at W and R, is given
by

R p(x') dx’
l ¢ a2 e L12d
where p(x) = %glg [af(x,v) - %é%%} (20)

for (17) and

e R (21)

for (18).

Integrating (19), the uniqueness relations become

K(v) = QEE (k) of(v) JR (22)

k(v) = 2]%. K(k) og(v) JW (23)

where K(x) and E(x) are respectively the complete elliptic integral of the
first and the second kind, with modulus x = /T — W/R. In these equations
the reader will find a notational inconsistency, because we have used K to
denote both the stress intensity factor and the complete elliptic integral
of the first kind. We have done so to conform to the traditional notation.
There is no difficulty, however, if readers will note that the argument of
the stress intensity factor is always velocity, v, while, the argument of
the elliptic integral is always <. In the derivation of (22) and (23), we
have assumed that the friction stress is a function of steady state
velocity and independent of position. When v-0 (22) and (23) give the
well-known static results (Chang and Ohr, 1981, Majumdar and Burns, 1983,
Weertman et al., 1983). To complete our analysis, the integral in (17) is
inverted and the dislocation density a(x,v) is obtained by the equation

AFR-1—AA*
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s,y L [ =2 ®R=-% R __px'yax’
= x SRT=WIR X)) (x'= %), (2

wherg p(x) is given in (20)
density function becomes

_ bog(v)
ax) = P k) 2¢4, 0

_bog(v)
- ;% [K(x) E(4,x) — E(k) F(4,x)], (25)

?herf_2(¢, k) is Jacobi’s zeta function with a
/1 'w7x3/n). F(¢, x) and E(4,
the first and the second kind.
moving crack tip is

rgument ¢ = sin !
k) are incomplete elliptic integrals of
The local stress intensity factor at the

R
k(v) = K(v) — 2L a(x',v) i
ﬁl r-o 26

Combining (25) and (26), we have

k(v) = K(v) -2 /ZZ . =(r)
v) ~ K(x) TI="%% Rin) —1] of(v)Jw . (27)

Substituting (22) into (27), ve find the local stress intensity

k(v) =212
(v) 2Jj:.K(k) af(v) N . (28)

This result is exactly the same as (23) derived from the uniqueness

condition. e ota Burge s
dit h tot rs vector of dlSlOCaCIOIlS, B, is obtained by

R
B = l a(x',v) dx’

_ 4Wog(v) K2 (k) E2(k) 1
Ty R2(k) 1-k? ] (29)

We note th i

b e i:ﬂ;hequaflo?s. (%ZL (23), and (29) derived for dislocation

e e relativistic steady state are not a complete set in ter
variables, until the constitutive relation between og(v) 123

a(v) is specified. W i .
paper. e will return to this part of the problem in a later

In 2-D equation (16) becones

kZ(v) —-k2(v)
E;;————————— = Ifbaf(x,y,v) a (x,y,v) dxdy , (30)
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After the integrating (24), the dislocation

where a(x,y,v) is two dimensional dislocation density and db = adxdy. The
strain rate is related to a by

bav = ¢ o

Using (31), then (30) becomes

R2(v) — k2(v) _ 1 f .
E;;—————————— = of(X,y,V) € dxdy, 32)
which was obtained by Freund and Hutchinson (1985) wusing a somewhat

different approach.

One of the major conclusion of prior analysis of dynamic fracture is that
for a given applied K(0) the plastic zone size, R, decreases with crack
velocity. This result follows immediately from our simplified analysis,
because (22) with (9) can be written as

/T =B K(0) = 2[_72;.53(&) og(v) JR . (33)

Since og(v) 1is an increasing function of v, it follows that R must be a
decreasing function of v to satisfy (33);

CONCLUSIONS

We have shown that the simple one-dimensional BCS-Ohr model of fracture can
be generalized to relativistic steady state motion and can serve as a very
simple and analytic zero order approximation for dynamic fracture and crack
arrest problems.
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