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ABSTRACT

Various approaches to the study of ductile fracture in metals are dis-—
cussed, including the application of dilatant plasticity theories and a
number of analyses for representative unit volumes containing a single
void. The porous ductile material model discussed is a kinematic/isotropic
hardening version that can be used to represent the formation of a rounded
vertex on subsequent yield surfaces, and this model is used to study the
interaction of two size-scales of voids. Model studies for the effect of
nucleation are presented, and a viscoplastic version of the porous ductile
material model is used to represent the brittle ductile transition.
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INTRODUCTION

Failure in ductile metals occurs mainly by coalescence of microscopic
voids. The voids tend to nucleate at second phase particles, by decohesion
of the particle-matrix interface or by particle fracture, and subsequently
they grow due to large plastic deformation of the surrounding metal matrix.
When adjacent voids are sufficiently large relative to their spacing, they
interact strongly and finally coalesce as the ligament necks down. In some
cases localization of plastic flow in a shear band occurs prior to coales—
cence so that subsequent nucleation and void growth takes place only inside
the band, leading to a so-called void-sheet failure.

Constitutive relations that account for porosity in ductile materials have
been proposed by various authors. The most well-known model is that devel-—
oped by Gurson (1977), based on micro-mechanical studies. which has been
improved subsequently by various authors. To also account for the effect of
a rounded vertex that often develops on subsequent yield surfaces at the
point of loading, Mear and Hutchinson (1985) have suggested a kinematic
hardening version of the porous material model. This model, extended to
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account for void nucleation (Tvergaard, 1987a), is presented in the present
paper.

Analyses of the behaviour of a characteristic unit-volume containing a sin-
gle void are an important tool in the understanding of porous ductile mate-—
rial behaviour. Results of a number of such analyses are discussed here,
representing periodic arrays of circular cylindrical voids or spherical
voids. For a void in a pure shear field the void volume decays, and here
the particle remaining inside the void after nucleation plays an important
role. Furthermore, the interaction of two size scales of voids is illus-
trated by results of a full 3D numerical analysis for a periodic array of
spherical larger voids, with both size scales of voids represented in terms
of the porous ductile material model.

The brittle ductile transition in structural alloys results from the compe-
tition between two fracture mechanisms, cleavage and void coalescence,
while the difference between transition temperatures at impact loading and
slow loading, respectively, is a result of material strain-rate sensitivi-
ty. A material model that includes these additional effects is briefly dis—
cussed and illustrated by numerical results (Tvergaard and Needleman,
1986,1988) obtained for Charpy V-notch specimens.

CONTINUUM MODEL FOR PORCUS DUCTILE SOLIDS

For a ductile material containing a certain volume fraction of micro-voids
Gurson (1977) has developed a material model, based on averaging techniques
analogous to those applied to a polycrystalline aggregate by Bishop and
Hill (1951). The unit cube considered by Gurson (1977) is an aggregate of
voids and rigid plastic material, and approximate upper-bound solutions on
the micro-level have been used to derive a macroscopic yield condition.

In the present paper the ductile porous material model will be presented in
terms of a generalized form suggested by Mear and Hutchinson (1985), who
introduced a family of isotropic/kinematic hardening yield surfaces of the

form db(cri'j . a.i‘j » Op . f) =0 , where f is the current void volume
fraction, o' is the average macroscopic Cauchy stress tensor and a'd
denotes the center of the yield surface. The radius o of the yield sur-

face for the matrix material is taken to be given by

c7F=(l—b)ay+bcyM (1)

where oy and oy are the initial yield stress and the matrix flow

stress, respectively, and the parameter b is a constant in the range

[0 . 1] . This material model was extended by Tvergaard (1987a) to account
for void nucleation. The constitutive relations are formulated such that
for b =1 they reduce to Gurson's (1977) isotropic hardening model,
whereas a pure kinematic hardening model appears for b =0 .

The approximate yield condition used is of the form
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Fig. 1. Yield surface dependence on the value of f (f)
in (2).
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Hutchinson (1985), which coincides with that of Gurson (1 )
Tﬁecparamet((er q (> 1) was proposed by Tvergaard (1981,1982a) to bring

he model at low void volume fractions in closer agreement
c arrays of voids. The function

the expression (2) is that proposed by Mear and

predictions of t vol
with full numerical analyses for periodi
f*(f) in (2) was introduced by Tvergaard and Needleman (1984) to.model'the
more rapid loss of material stress carrying capacity associated with void
coalescence (see Fig. 1). This function was chosen as

f , for f ¢ fc
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so that the modification becomes active when f exceeds a certain critical
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and final fracture occurs for f = fp (i.e. f (fF) =fy =
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ults and numerical model analyses the val-

l/ql) . Based on experimental res
= 0.15 and fF - 0.25 were chosen (Tvergaard and Needleman,

ues f
¢ =1.5.

1984), and many investigations have used the value 9,

en here in the context of a Lagrangian formulation of the

Equations are giv ia f
h in which a material point is identified by the coordinates

field equations,
1 in the reference configuration. The metric tensors in the
rence configuration are denoted Gij and gi_j
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figuration and the refe

respectively, with determinants G and g , and T'ij denotes the

Lagrangian strain tensor. The contravariant components of the Cauchy stress
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tensor c11‘j and the Kirchhoff stress tensor 1'1‘j on the embedded deformed
coordinates are related by the expression le = NG/g aIJ . Indices range
from 1 to 3 , and the summation convention is adopted for repeated indi-
ces.

The plastic part of the macroscopic strain increment T.]F;J and the effec-
: . P -P .
tive plastic strain increment €M for the matrix material are taken to be

related by (see Tvergaard, 1987a)

~ij P .
a‘]nij=(1—f)aFe; (5)

For f =0 (5) is an exact relationship for the classical kinematic har-
dening solid, and for b =1 the expression reduces to the equivalent
plastic work expression applied by Gurson (1977). Substituting the uniaxial

true stress natural strain curve for the matrix material, eP = (1/E_ -
. i M t
1/E)o,, . into (5) gives

EE oid ;P
M=E-E, (1- Do,

where E and Et. are Young's modulus and the tangent modulus, respective-
1y

In the studies to be discussed here the uniaxial true stress-logarithmic
strain curve for the matrix material will be represented by the piecewise
power law

[o4
E , for o<o
€= n (7
E![Q_] , for o220
g y

where n is the strain hardening exponent.

The change of the void volume fraction during an increment of deformation
is taken to be given by

B (”growth + ()ycleation (8)
The increment due to growth is

H _ _ ij P

(f)growth = (1 - )67 0y (9)

since the matrix material is plastically incompressible. Nucleation of new
voids occurs mainly at second phase particles, by decohesion of the parti-
cle-matrix interface or by particle fracture, and Needleman and Rice (1978)
have suggested a nucleation model of the form
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A fictitious Gurson yield surface ¢*G = ¢G( G f) was used by Tver-—

o
» Oy »
gaard (1987a) to formulate the constitutive relations, where Iy and f

are the current values, and a(l;‘] are a set of fictitious stress components
chosen such that

aij ~ij
&= - (11)
oM F

With this assumption, &, = 0 is a direct consequence of ¢ = O . In most

G A
cases the fictitious stresses a(l;j will differ from the actual stresses

orij at every point of the current yield surface.

The expression for ﬁl:j in a point of the yield surface $® = 0 is chosen
jdentical to that given by the Gurson model at the point aci:j of the fic—

titious surface ¢G - O . Thus, the plastic part of the macroscopic strain
increment is taken to be
. 1 G F vké
M55 = H ™ij™ke (12)
where
G 3 ;ij 3 gij
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Plastic yielding initiates when ¢ =0 and $ > 0 during elastic deforma-—

1
tion, and continued plastic loading requires ¢ = O and q “{e gke >0

The evolution equation for the yield surface centre during a plastic incre-—
ment is taken to be

_ps |, o (16)
which is a finite strain generalization of Ziegler's (1959) hardening rule.

The value of the parameter p is determined so that the consistency condi-
tion, & = 0 , is satisfied
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In cases where large rotations of the principal stress axes occur relative
to the material, the finite strain generalization (16) in terms of the
Jaumann rate may give a poor representation of material behaviour, and
other corotational rates may be preferable (Dafalias, 1983; Lee et al.,
1983). However, in shear localization studies the rotations of the princi-
pal stress axes prior to localization are quite small, and for such studies
Mear and Hutchinson (1985) have found that using the Dienes rate makes
little difference.
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+
_ﬂQ |‘<Q

Materials, in which nucleation is controlled by the maximum normal stress
on the particle-matrix interface, are modelled (Needleman and Rice, 1978)

by using the sum oy * 01;/3 as an approximate measure of this maximum

stress, thus taking « = % in (10). Chu and Needleman (1980) have suggest-—
ed a normal distribution for nucleation, so that # and % are given by

k 2
i 1 (ch + ak/S) - oN
N 2 s
e
o

sN2w

-
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|

(18)

k
for oy + ak/3

k k .
(crM + ak/.'S)m_x and (UM + ok/3) >0

where oy is the mean stress for nucleation, s is the corresponding

standard deviation, and fN is the volume fraction of void nucleating par-
ticles.

A material, in which nucleation is controlled by the plastic strain e_: i

can be modelled in terms of (10) by taking o > O and % = O . Again as-
suming a normal distribution, the expression for # 1is analogous to (18),
with €N and s denoting the mean strain for nucleation and the corre-

sponding standard deviation, respectively.

The incremental constitutive relations are obtained by assuming that the

total strain rate is the sum of the elastic and plastic parts, 1.7 = 1.] +
-p vij _ gijké -E 1y - 4
"ij , and using the elastic relationship o =% e - This leads to
incremental constitutive relations of the form (Tvergaard, 1982c)

ij _ [,idke _ ijke|.

T = [1 T MM |, (19)

where
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MODEL STUDIES FOR PERIODIC ARRAYS OF VOIDS
Detailed micro-mechanical analyses for characteristic unit volumes with

known void volume fraction have been an important tool in the understanding
of the influence of porosity in ductile materials.

Effect of porosity

An early numerical analysis of this type was carried out by Needleman
(1972) for a square array of circular cylindrical voids. Here, the consid—
eration of a periodic array of voids is important, since this allows for
the assumption of a periodic solution, where only a small subregion has to
be analysed. The same type of method has been used in a recent analysis by
Guennouni and Francois (1987).

An axisymmetric model problem, with a circular cylindrical body containing
a single spherical void, has been used by Tvergaard (1982a) to represent a
periodic array of spherical voids. Such adjacent cylindrical bodies are not
compatible, but the application of axisymmetry facilitates the analysis
significantly, and it has been assumed that the solutions for hexagonal
cylinders (see Fig. 2) are reasonably well approximated by the axisymmetric
solutions. Also a spherical body with a concentric spherical void has been
used in a number of model studies, again assuming that the solutions are
reasonably good approximations in spite of incompatibilities between adja—
cent spherical bodies.

The upper-bound rigid plastic model analyses used by Gurson (1977) to de-
rive the approximate yield condition of the form (2). for b=1 and
q = 1 , were based on a spherical body with a concentric spherical void.

Subsequently, numerical studies for the square array of circular cylindri-
cal voids, as well as the periodic array of spherical voids represented by
cylindrical model problems, have been used to investigate this porous mate—
rial model, and localization studies for these two types of model problems
have been the basis of introducing the additional parameter q = 1.5 in

(2). Critical strains, nominal tractions and band inclinations at shear

band bifurcation found by Tvergaard (1981) are shown in Fig. 3 for uniaxial
plane strain tension, comparing results of cell model studies (square array
of cylindrical voids) with predictions of the continuum model for q, = 1.5

(solid curves). The chosen value of q, larger than unity gives a signifi-
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cant improvement, but no perfect fit, and this level of agreement is sup-
ported by the comparisons of Tvergaard (1982a) and in a number of more re—
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Fig. 2. Axisymmetric model of a material containing

cent papers.

Since the model studies tend to focus on periodic arrays of voids, an ex-
perimental investigation by Magnusen et al. (1987) for
void distribution is of significant interest. A series
have been carried out for specimens with either random
cylindrical holes drilled through the thickness, where
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(Tvergaard, 1981).
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of holes is the same in all cases. The degree of randomness was control led
by specifying a minimum hole spacing, and it was found that the fracture
strain is smaller the more randomness is allowed, while a regular square
array of holes gave the maximum fracture strain. On the other hand, the
effect of randomness on the behaviour prior to final failure was much smal-
ler.

Sof tening due to nucleation

One consequence of void nucleation is a reduction of the macroscopic strain
hardening capacity during the process of nucleation. Since plastic instabi-
lities depend strongly on the values of the instantaneous moduli this re-—
duced hardening can result in instabilities that are precursors of final
failure. In fact, based on the Gurson model Needleman and Rice (1978) have
demonstrated that a burst of nucleation can result in very early localiza-
tion of plastic flow in a shear band. Such localization may lead to shear
fracture, but analyses carried beyond the initial onset of localization
(Tvergaard, 1982c) have shown that in some cases the localized plastic flow
stops once the burst of nucleation is over.

Model studies to get a more detailed understanding of the softening behavi-
our associated with nucleation have been carried out by Hutchinson and
Tvergaard (1987). Some of these studies were carried out for an isolated
spherical void in an infinite matrix, to represent situations where the
interaction between adjacent voids is negligible. Other studies were car—
ried out using the axisymmetric model problem illustrated in Fig. 2. In all
cases nucleation at some given level of macroscopic stress or strain was
modelled by incrementally reducing the traction across the particle/matrix
interface to zero. No attempt was made to model the actual process of in—
terfacial decohesion, since the main focus was the effect of nucleation on
macroscopic material behaviour.

Nucleation of an isolated void at macroscopic stresses Eij that have been

applied proportionally, result in stress redistribution and additional
straining of the matrix. The additional macroscopic straining during the

is denoted by iAEij such that

EiijEij is the extra work done by the remote stress due to nucleation.

nucleation of the void volume fraction f

Thus, in the presence of nucleation the strain increments are given by

Ei_j = Mijke Eke + fAEij (23)

where M, are the incremental compliances corresponding to f =0

ijké
Numerical results for a spherical void in an isotropic hardening Mises ma-—
terial are well approximated by an expression of the form (Hutchinson and
Tvergaard, 1987)

1 Em 1 Em
AE. . = =— F|=—|2.. + =G|z|Z_ 6. .
ij t Ee ij E Ee m ij

(24)

where Em and Ee are the macroscopic mean stress and Mises stress, re—

spectively, and E;j is the stress deviator.

167



5 Without nucleation
S-T
%o
Nucleation starts at S=3.60y
at S=30,
1 Void present
from beginning
1 J
05 (oX] 0.2
Es

Fig. 4. Effect of nucleation at constant axial strain for
fixed ratio T/$ = 0.5 of radial and axial
macroscopic stresses (Hutchinson et al., 1987).

The functions F and G depend mainly on Em/Ze ., but there is also a

weak dependence on the total strain increment during nucleation and on the
ratio Et/E . Since I/Et is generally much larger than 1/E and F is

much larger than G , it is clear from (24) that the deviatoric contribu-
tion to AEi is much larger than that of dilatation. A comparison with

the Gurson model, (1)-(15) for b = 1 , shows that the numerically deter-
mined values of F are reasonably well represented by the Gurson model,
while this model neglects the dilatant contribution to AEiJ (i.e. G =0)

The effect of a uniform distribution of spherical particles that nucleate
voids simultaneously has been studied by analysing the axisymmetric model
problem illustrated in Fig. 2. The volume fraction of rigid spherical par-
ticles is chosen as 0.01 and the analyses are carried out for a relative-
ly high stress triaxiality, witha fixed ratio 0.5 between radial and
axial macroscopic true stresses. In this stress state the void expands
everywhere as soon as the interfacial forces are relaxed, so that matrix-
particle interaction after nucleation is not an issue. If nucleation oc-
curs at constant macroscopic stress, zij = 0 , the additional strains in

(23) are directly obtained, and the corresponding values of F and G
computed from (24) have been found to agree reasonably with those determin-
ed for an isolated void. When nucleation takes place at constant macro-
scopic strain, the stresses decay to values somewhat below the curve for a
void present from the beginning (Fig. 4), while elastic unloading takes
place in a great deal of the matrix material near the voids. After a small
amount of further stretching these unloading regions disappear, and the
stress—strain curve is slightly above that for voids present from the
start.

These nucleation model studies have shown that the macroscopic hardening
rate is strongly reduced during nucleation, and that a burst of nucleation
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can even give negative hardening.

Void growth in shear

The growth of an isolated void in a block of material undergoing simple
shearing with superimposed hydrostatic tension has been analysed by Fleck
and Hutchinson (1986) for viscous solids, considering both linear viscosity
and nonlinear viscosity (power law creep). An important result of these
analyses is that in a shear field an initially spherical or circular cylin—
drical void tends to close as the shear strain grows large. Possibly, void
closure would be expected at large shear strains, when the mean stress is
zero, but this also occurs at a positive mean stress as large as about half
the applied shear stress. This behaviour is not accounted for in the porous
material model discussed in the first section of this paper, nor in (24),
where void growth is associated with a positive mean stress.

The fact that the voids try to flatten out in a shear field makes the issue
of particle matrix interaction central in such studies, subsequent to nu-
cleation. This question has been treated in some detail by Fleck, Hutchin-
son and Tvergaard (1988). The presence of a particle inside a void has the
significant effect that the void volume cannot decrease, and if there is
any opening around the particle, the volume must have increased.

Fig. 5 shows the initial mesh and two deformed meshes for a numerical anal-
ysis of a material containing a row of constantly spaced circular cylindri-
cal voids, along which final shear fracture is expected to occur. Periodic—
ity conditions are prescribed at the sides of the region analysed (Fig.
5a), symmetry conditions are prescribed at the bottom, and shear stresses
212 are applied at the top of the region. The solid is elastic-perfectly

plastic with yield stress 9y -

Fig. 6a shows shear stress-strain curves for a case where the particle re—
mains bonded to the matrix material, a case where the void is nucleated at
zero strain and the particle remains in sliding contact with part of the

void surface, and a case with no particle. The cross—sectional area change
of a void, normalized by the initial area, is shown in Fig. 6b. In the case
of no particle the void contracts, as already mentioned above, and during

this contraction the shear stress slowly increases. The presence of a par-—

- A '//‘lf,”i)j
(b) tc)
Fig. 5. Initial mesh and two deformed meshes in study of

shear failure along row of constantly spaced
circular cylindrical voids (Fleck et al., 1988).
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Fig. 6. Shear stress and void growth vs. shear strain for
a row of voids in elastic-perfectly plastic mate-
rial (Fleck et al., 1988).

ticle has a strong influence by enforcing a significant void growth, as can
also be seen by comparing the voids in Figs. 5b and c. It has been found by
Fleck et al. (1988) that a superposed compression on the top of the region
analysed (Fig. 5a) increases the difference between the void growth predic—
tions, whereas a superposed tension reduces the difference, until there is
no difference when the particle looses contact with the void surface.

Both the void contraction in a material subject to pure shearing and the
influence of particle-matrix contact after nucleation are important effects
that are usually disregarded in porous material models. This could play an
important role in cases where localization of plastic flow in a shear band
results in shear fracture by a void sheet mechanism. Further investigations
would be necessary to disclose how important these effects are during the
coalescence process inside a shear band, dependent on the stress state in
the band.

INTERACTION OF TWO SIZE SCALES OF VOIDS

A number of structural alloys contain two size-scales of second phase par-—
ticles, i.e. a population of relatively large particles with low strength
and a population of much stronger small particles. In such materials large
voids nucleate at a relatively early stage, while smaller voids nucleate
much later, and ductile fracture by void coalescence involves the interac-
tion of the two void populations, as has been observed by Hancock and
Mackenzie (1976) for structural steels and by Hahn and Rosenfield (1975)
for aluminium alloys. Localization of plastic flow in the matrix material
between the larger voids and subsequent void-sheet fracture represents an
important mode of final failure in this type of materials.

Plane strain or generalized plane strain analyses of this type of failure
mechanism have been carried out (ITvergaard, 1982b) by representing the
larger voids as a periodic array of preexisting cylindrical holes and using
the Gurson model to represent the small scale voids in the matrix material
between the larger voids. A limitation of this plane model is that only
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Fig. 7. Model material containing a 3D periodic array of
larger spherical inclusions.

cylindrical voids can be represented. An analogous analysis using a cylin—
drical model problem with a spherical void (Fig. 2) would have the limita-
tion of not being able to represent shear localization between the larger
voids.

Recently, a 3-dimensional array of spherical large-scale inclusions has
been considered (see Fig. 7), which requires a full 3D numerical analysis
of the deformation and damage fields (Tvergaard, 1987b). In addition to the
interaction of two different void populations this study also involves the
development of a 3D shear band. Previous plane strain localization studies
(Tvergaard, Needleman and Lo, 1981) have shown that the accurate represen—
tation of a shear band is very dependent on the type of finite elements
used, and on the mesh design. Therefore, a box shaped super element is
chosen, built up of 24 tetrahedral elements, in such a way that flow local-
ization along 9 different types of planes is allowed for in a regular mesh.
Due to periodicity, only the region enclosed by the intervals [O , Ao] ¥

[o . BO] and [O , CO] on the coordinate axes needs to be analysed numer-—
ically.
The porous ductile material model with isotropic/kinematic hardening de-

scribed in the first section of this paper is used for the analysis. The
small strong particles in the matrix material between the larger inclusions

are represented by a constant volume fraction f; of void nucleating par-—

ticles, while each of the large inclusions is represented as an "island” of
additional volume fraction AfN . Thus, in the vicinity of a large inclu-

sion, with center at the coordinates (x(l) . xg , xg) and with radius o

the concentration of void nucleating particles is assumed to vary according
to

2
o 1 1,2 2 2.2 3 3,2 4
fy = fy + Afy exp —{(x “xg) + (x —xg)T + (x —xo) ] /ro} (25)
At the larger inclusions, represented by AfN . nucleation is assumed to
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Fig. 8. Development of void volume fractions andprincipal
strains vs. average tensile strain, for €111 = [0}

and ZII = 0 (Tvergaard, 1987b).

follow a stress controlled criterion, so that the large spherical voids

nucleate relatively early, as soon as the stresses grow large. At the small
. o .

particles, represented by fN , nicleation occurs according to a strain

controlled criterion, so that large strains are required before the small-

scale voids appear.

Results of two computations, for b =0 and b =1 ., respectively, in (1)
are illustrated in Fig. 8 by the development of the void volume fraction at
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five different points of the region analysed and the maximum principal log-—
arithmic strain at two points vs. the macroscopic logarithmic strain €11

in the xl—direction. On the macroscopic level the material is subjected to
uniaxial plane strain tension, with errr = 0 and EII = 0 , and the mesh

used consists of 7x7x3 box super elements, where the smaller resolution

f s 3 ;
is in the x —-direction.

In the initial stage the two strain values shown in Fig. 8b remain nearly

identical, but then they start to differ, and at some stage localization of
plastic flow occurs. The onset of elastic unloading is indicated by an ar—
row on the curves, and ‘pu is the angle of inclination of the diagonal at

unloading. When elastic unloading reaches point A , soon after the initial
elastic unloading, N becomes constant, while the peak strain ép inside

the shear band starts to grow much more rapidly. It is seen that somewhat
earlier localization is predicted by the kinematic hardening model than by

the isotropic hardening model. The value fO of the void volume fraction

is taken inside the "island” of additional stress controlled nucleation,
and here the porosity increases rapidly. leading to a large sof t-spot that
grows into one of the larger voids. The circle at the end of the curve in—
dicates the point where the first final failure occurs in one of the 24
tetrahedral elements of the box element. The values fx and fY represent

points outside the shear band, where the void volume fraction is constant
after that elastic unloading occurs and remains relatively low. Both fB
and fZ are inside the shear band, and these values grow rapidly towards
final failure after the onset of localization. Due to the symmetries assum—
ed here, two shear bands cross through the region represented by fz ., and

therefore fZ grows more rapidly than fB . The 3D aspects of the computa-—
tion are most clearly illustrated by the difference between fo and fZ
in Fig. 8a. If plane strain was assumed throughout the material, fZ would

be identical to fo by definition.

Computations using this 3D material model have also been carried out for a
higher level of stress triaxiality ):II/EI = 0.25 , and for a macroscopic
strain state that deviates from plane strain, as specified by eIII/(-,II o
0.5 . In all these computations the radius T of the larger inclusions

(25) is chosen corresponding to a volume fraction 0.01 and the volume
fraction of small scale particles is taken to be 0.04 . The width of the

region analysed is taken to be C0 = JAOBO ., and the value of the aspect
ratio AO/BO is chosen such that the angle of inclination of the diagonal

is close to the critical angle for shear bands when localization wants to
occur. This means that the periodic pattern analysed is chosen representa-—
tive of the most critical relative location of larger voids, for which fai-
lure by shear localization between two larger voids is first critical.

The 7x7x3 mesh used for these 3D numerical analyses is rather crude. Some
insight in the effect of a mesh refinement is gained from a comparison with
plane strain results, which indicate that a finer mesh in the coordinate

plane normal to the shear band (the xl—xz—plane) will give earlier locali-
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zation, mainly because the strain concentrations around the larger voids
are better resolved. At the same time such a finer mesh would allow for a
more narrow shear band, which would lead to a smaller overall strain at
final failure. Furthermore, 3D computation with a 7x7x5 mesh show that
the results are not very sensitive to a mesh refinement in the sideways

direction along the shear band (the x3—direction).

BRITTLE DUCTILE TRANSITION

The transition from a low absorbed fracture energy to a high absorbed ener-
gy in structural alloys is characterized by a competition between a brittle
failure mode and a ductile failure mode. Ductile fracture with the associ-
ated high energy absorption occurs by void coalescence, while in body-cen-
tered-cubic (b.c.c.) metals failure in the low temperature range occurs by
cleavage. Tvergaard and Needleman (1986) have used an extended version of

the porous ductile material model to study this fracture mode transition.

Strain-rate sensitive material model

Failure by cleavage is included in the material model in a relatively
simple manner, by assuming that failure occurs if the maximum principal

tensile stress exceeds a certain critical value 9c

Max(cr1 A 03) 2 9 (26)

Such a constant critical stress has been found to be a realistic criterion
for slip induced cleavage failure in b.c.c. metals at low temperatures

(Cottrell, 1958; Petch, 1958; Hahn, 1984). The criterion may be less accu-
rate at higher temperatures near the transition to fibrous fracture, where
final link-up of the cleavage micro-cracks requires further plastic defor-
mations; but it has been assumed (Tvergaard and Needleman, 1986,1988) that

a constant value of 9 in (26) is a sufficiently good criterion in the

temperature range considered.

In addition to cleavage fracture it is also important to incorporate mate-
rial strain-rate sensitivity in the material model, since this accounts for
the difference between the transition temperature at slow loading and that
at impact loading. Rate sensitivity is incorporated in the ductile porous
material model (Pan, Saje and Needleman, 1983) by representing the matrix
material as elastic-viscoplastic. The microscopic effective plastic strain-

rate é; is represented by the power law relation

o 1/m
P _ M
ey = &OL (27)

(ey)

where m is the strain-rate hardening exponent, € is a reference
strain-rate, and ( ) denotes the time derivative in this time-dependent

material model. The function g(&;) represents the effective tensile flow
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stress in the matrix material in a tensile test carried out at a strain—
rate such that é: = éo . For a power hardening material with strain har-

dening exponent n and reference stress 9, the function g(e;) is given
by
P,yn P
P ao g(f‘«M) g(en)
M TE |10 -
o o

8(0) = o, (28)

3

In the elastic-viscoplastic material model the function <l>(al s Oy e

f) =0 given by (2) for b =1 is used as a plastic potential, so that
the inelastic part of the macroscopic strain-rate is given by

r';';. = &2 (29)
J 601‘]

Furthermore, equality of the macroscopic plastic work rate wi th the micro-
scopic dissipation ((5) for b = 1) is assumed, and this requirement to-
gether with (29) gives

=1

P .P| ij e
A=(1 f)aM emlo 13 (30)
do

The rate of increase of the void volume fraction is still assumed to be
given by (8) and (9). with the expression (10) for the rate of nucleation
replaced by
(5 —alo. + (/3| + 0P (31)
nucleation M k M
This different expression for the nucleation of new voids is necessary to
represent plastic strain controlled nucleation, since in the viscoplastic

. < . . -P e
material model there is no one to one relationship between M and oM

Finally, to determine the values of f and &M the consistency condition
¢ = 0 is needed in each increment.

The total macroscopic strain-rate is taken to be the sum of the elastic and
inelastic parts, 7.1”. = 1.1];'1 + r.y];j . as in the time-independent model, and
it is noted that in the limit m —» O the elastic-viscoplastic material
model reduces exactly to the time-independent porous material model for

b =1 . A kinematic hardening version (b < 1) of this viscoplastic mate-—
rial model has been discussed by Becker and Needleman (1986).

The Charpy V-notch test

A measure of the fracture mode transition in structural alloys is tradi-
tionally obtained in terms of the energy absorbed in the Charpy V-notch
test. An alternative measure is the temperature dependence of the critical
value of the stress intensity factor KIC for a sharp crack, or KId in

the case of dynamic loading. Relations between these measures have been
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Fig. 9. Computed curves of absorbed energy vs. tempera-—
ture for a high nitrogen steel. O low imposed

velocity, 5-10_4 m/sec . 0O impact, 5 m/sec
(Tvergaard and Needleman, 1988).

discussed by a number of authors (e.g. see Rolfe and Barsom, 1977).

Numerical studies of the transition in the Charpy V-notch test have been
carried out by Tvergaard and Needleman (1986,1988). The first investigation
focused on the effect of different strain-rates at a constant temperature,
thus comparing the behaviour at slow bending with that at impact loading.
It was found that the viscoplastic porous material model, extended by the
simple representation (26) of cleavage failure, is able to reproduce the
experimentally observed behaviour. An increased loading rate can indeed
result in a transition from fibrous fracture initiation to fracture initia-
tion by cleavage, associated with a reduced energy absorption. The results
also indicate agreement with the experimental observation that on the upper
shelf, where fibrous fracture is dominant, the absorbed energy is larger at
impact loading than at slow loading, due to the rate dependent difference
in the apparent yield stress.

In a more recent investigation (Tvergaard and Needleman, 1988) the tempera-
ture dependence of the absorbed energy predicted by the material model has
been computed for a particular material, the high-nitrogen mild steel stud-
ied by Ritchie, Knott and Rice (1973). The temperature dependence of the
initial yield stress is given by Ritchie et al. (1973) and the additional
specification of the ultimate tensile stress makes it possible to estimate
the temperature dependence of the strain hardening exponent; but still the
assumption of simple power hardening at all temperatures may be a crude
approximation. Furthermore, the value of the rate hardening exponent m
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was not specified in the experimental investigation, but was taken in the
computations to be constant at a value m = 0.01 , representative for mild
steels.

Fig. 9 shows computed absorbed energies for two different imposed veloci-

ties, 5-10_4 m/sec and 5 m/sec , respectively, at the mid point of the
specimen where the pendulum hits. It is seen that the brittle ductile tran-—

sition is predicted at -85° and -50° for slow loading and impact load-
ing, respectively, while a rather untypical behaviour is found at tempera-

tures above 450 . due to the development of "blue brittleness” for this
material. In fact, the strongly increasing strain hardening for increasing
temperature plays an important role, so that even at the upper shelf found
in Fig. 9 the two failure modes remain in close competition. Therefore. the
predictions may be rather sensitive to changes of the estimated material
parameters.

In addition to the quasi-static analyses, a few computations have been re-
peated as dynamic analyses (Tvergaard and Needleman, 1988), taking full
account of inertia. Although these analyses show strong oscillations of the
contact force between pendulum and specimen, the absorbed energies found
are in good agreement with the predictions of the quasi-static analyses.

OONCLUDING REMARKS

The current understanding of porous ductile material behaviour relies on
micro-mechanical modelling as well as experiments. Here, the focus has been
on theoretical modelling, regarding the apparent dilatant plasticity on the
macroscopic level, as well as the representation of more complex fracture
mechanisms. This includes localization of plastic flow in shear bands, the
interaction of two size scales of voids, or void growth involving contact
between the void surface and a second phase particle inside the void.

For experimental investigations powder compacts sintered to various known
levels of porosity are very useful. In these materials the distribution of
porosity is reasonably uniform with known void volume fraction, and since
nucleation of new voids is not an issue, the effect of void growth is test-—
ed separately in such experiments. In addition to tests for uniaxial ten—
sion or compression (e.g. see discussion by Tvergaard, 1987a), a detailed
comparison of theoretical and experimental results for notched tensile
specimens has been carried out recently by Becker et al. (1988). This com-—
parison is particularly interesting, because it covers both void growth and
final failure mechanism in a strongly non-uniform strain field.

The correlation of nucleation with strains or stresses for a given alloy
must still be obtained from experiments. However, micro-mechanical studies
can give important information about particular effects, such as decohesion
mechanisms, the influence of nucleation on macroscopic behaviour, and the
importance of particle matrix contact after nucleation.
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