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ABSTRACT

A finite element program for incompressible deformation was developed to
obtain scalable fully plastic solutions of various flawed geometries. An
automatic mesh generation scheme applicable to fracture mechanics is pre—
sented. In many respects, the method used is efficient and economic. For
instance, displacements and crack parameters can be determined without the
computation of the hydrostatic stress. Some examples are presented.
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INTRODUCTION

The use of EPFM (Elastic-Plastic Fracture Mechanics) to assure structural
integrity may result in structural designs where material's full plasticity
capabilities can be accounted for. This can be a significant gain over
LEFM especially in the case of very ductile materials.

The estimation procedure in an engineering approach proposed by Kumar and
his collaborators (198la) consists in combining elastic and fully plastic
solutions by a suitable interpolation between these two extreme cases for a
given applied load. Plastic solutions are given by scalable FEM solutions
in the fully plastic regime while elastic solutions are given by LEFM.

As clearly demonstrated by Kumar and co-workers (1981b), Goldman and
Hutchison (1975) and others, one of the advantages of assuming full mate-
rial incompressibility by using power-law constitutive stress— strain rela-
tions is that a few FEM solutions may generate scaling laws that give
direct dependance of the solution on certain parameters such as applied
load, material hardening index, stress—strain law governing parameters,
etc.
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In this paper, we present some peculiarities of our FEM program (called
MREP) treating various planar and axi-symmetric flawed geometries in the
plastic plane deformation and incompressible state. Non-linear elasticity
(J2 deformation theory) is used and total incompressibility is assumed for
the plane strain state.

FEM FORMULATION FOR PLANE STRAIN FULLY PLASTIC SOLUTIONS

The inclusion of incompressibility constraints in the admissible
displacement field by direct elimination of nodal variables presents a
definite advantage over other methods like the penalty function procedure
(Zienkiewicz, 1977a) in which total incompressibility is only a limiting
case or an upper bound solution for v * 3, or like the Lagrange Multipliers
Method (Zienkiewicz, 1977b) in which the total number of nodal unknowns is
increased by the hydrostatic stress. Furthermore, introducing the
hydrostatic stress into the variational equation of equilibrium requires
the solution of a complete set of hydrostatic stresses at each iteration of
the solution process.

However, imposing the incompressibility constraints directly in the
displacement variations formulation by using static condensation of nodal
degrees of freedom increases considerably the bandwith of the assembled
overall rigidity matrix, and therefore increases as much the computation
time.

In the absence of body forces, the application of the principle of virtual
work for an incompressible material leads to:

J.A (s18e1 + S20e2 t S36e3) dA = [ (T16u + T 26v) ds (1)
s

where A is the plane under deformation, s, the boundary on which traction
T; 1is applied, Si are the deviatoric, E€j, the strain components given
as €; = 0u/dx, €2 = dv/dy and €3 = (du/ dy+dv/0dx), and bu, &v, the
displacement increment vector. In Eq. (1), all displacements satisfy the
incompressibility constraint:

degy + dey = 0 (2)
In FEM, a discretized form of Eq. (1) can be written:

Gu)T (J aTIB] da {ui} - {Fs}) =0 3)
A

in which F; and wuj are nodal forces and displacements, [B], the
strain-shape matrix and [D] the material stiffness matrix.

For CST (constant strain triangle) elements, the incompressibility
constraint, Eq. (2), is given as:

3
} (Bl 24-1 duj * B2 238vi) = 0 (4)
i=1
AUTOMATIC MESH GENERATION
Finite element grid for fully plastic solutions of incompressible solids

cannot be constructed arbitrarily like in a plane stress problem. As shown
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by Nagtegaal et al. (1974), the grid configuration should be such as to
obtain the maximum “DOF/constraints” ratio. The maximum ratio (for 2-D
problems) is reached for a quadrilateral basic element whose diagonals form
4 CST triangles. For this arrangement, authors have demonstrated that only
3 of 4 incompressibility constraints, Eq. (4) (one for each CST in the
quadrilateral) are independent, the last one being automatically satis-—
fied. 1In order to produce solutions in the entire range of "crack length/
width” ratio, (a/W), the FEM grid should accomodate precisely any crack
length for a given geometry. Conformal transformations were used to gener—
ate nodal coordinates (xj, yj) of the geometry from a cartesian map in
the working space U-V. Figure 1 illustrates the transformation:

L 27
5= - (5)
coth‘lw 1n|:'° L
w=-1

where z = xtiy and w = utiv in complex representation. The inverse is:

n/z -7/z
w = coth (g) = ﬁm (6)

The origin x=0 will eventually be the crack tip. Different selections of
boundaries upjp and upax (-1 and 1.4 in the example shown in Fig. 1)
will allow for different a/W ratios, whereas different selections of vpax
(3.5 in Fig. 1) will allow for different "length/width” ratios, L/W.
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Fig. 1. Conformal mapping z = n/coth’lw from space U-V to X-Y

Linear transformations such as:

and
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are then used to compress the walls suitably in order to get one quarter or
one half of the basic plate to be modelized. Finally, a semi-circular fine
grid is adapted to the region surrounding the crack tip. Circle radii vary
from the crack tip according to the geometrical progression T = r (L.1) .
Typically, i = 50 and ry = 0.002 W. Depending on boundary congicions,
various geometries like single—edge or double-edge notched panel can be
modelized. For axi-symmetric geonetries, solid rod with penny—shaped crack
or edge crack and flawed cylinders can be modelized.

STATIC NODE CONDENSATION AND CONSTRUCTION OF THE RIGIDITY MATRIX

The imposition of incompressibility constraints is done following precisely
the classical analysis of Needleman and Shih (1978).

Initially, substructures consisting of two strips of N quadrilaterals are
formed. In each substructure there are 6N constraints (of the type
Eq. (4)) to be satisfied, i.e. 3 by quadrilateral. Of these, 4N are satis—
fied by eliminating the two DOF of the central node of each quadrilateral.
Then, the rigidity of the substructure is obtained by combining quadrilat-
eral element stiffness matrices. Finally, the N-1 internal nodes are con—
densed plus one degree of the two mid-side nodes at both extremities of the
substructure. In all, this gives 6N constraints that are satisfied. The
resulting reduced stiffness matrix is then (4N + 6) x (4N + 6) whereas it
was initially (10N + 6) x (1ON + 6). For N = 10 and 13 1like substructures
in Fig. 2, rigidity matrices are reduced from 106 x 106 to 46 X 46, and
from 136 x 136 to 58 x 58 respectively. Therefore the total number of
equations to solve is more than halved. The penalty, however, is the
increased bandwith (106 as compired to 44 initially for N = 10). As shown
in Fig. 2, various substructure sizes can be connected without difficulties

provided global numbering of noles is done correctly.

Substructures
after DOF
elimination

Substructure
N=13

Substructure
N=10

Fig. 2. Configuration of substructures in the finite element grid

The condensation of internal quadrilateral nodes uses the same scheme as
for the condensation of the substructure center line of nodes, i.e. the

constraint, Eq. (4) is written as:
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[c] {uj} =0 )
and then

[Cel{ug}l + [Cellug} = 0 (8)

in partitioned matrix notation, where {ue} are the nodal unknowns to be

eliminated, and {ug}, th ini i ili
elin fome:l: £1s e remaining DOF. The incompressibility matrix is

{ug) = [6]{ug} )
with
[G] = -[Cel™t[CE) (10)

The stiffness matrix is also partitioned as:
Kee Kfe
K] =[
Kef Kee
and the reduced stiffness matrix, given as:
A} =
[K'] = [Kee] + [Kgel (6] + [G1T[Reg] + (61T [Keel[C] (11)
whereas reduced element nodal forces are given as:

(£'} = {£¢)} + [61T{£e) a2)

Subm:trices [G] for quadrilaterals and global [G] for substructures are
savf after the first computation for later use in order to recover the
tzrino: refm'):;i]al pirameters (displacements and residual forces) at each itera—
n o e solution process and to compute the hyd
rost
convergent solution is obtained. 7 atle stress once @

B:fore condensing internal nodes of quadrilaterals, care should be taken
; at all CST element stiffness matrices and nodal force vectors are reduced
rom (6 x 6) and (6 x 1) to (5 x 5) and (5 x 1) respectively.

Assembling [G], one will face the problem of

For all subsystems CST, quadrilategals and s:;l:te::ci:ugre[sie][cmj Eci;s. Sfi?xr)u;
t:;v:fya sIctaliasr,a aretIr:tiby 1(‘.wo maltlrix and a (6N x 6N) square materix respec—

. vely sma rob

dard Gaussian elimination with fulf pii:‘:i:;rt::l?:iqaupeplci;::tlijznis:gd 5;;‘“:
éine profiled matrix can be used, but the gain will not be signl.fican}t,.
are should be taken however to reorganize rows of this matrix

side band configuration. presenting =

ITERATIVE SOLUTION PROCESS
'i‘:: glffal 1tiffness matrix and nodal force vector are obtained by assembl-
a substructures. Then the displacement boundar iti
y conditions
imposed anc} the equations solved. The Newton—-Raphson method is used ;Zi
a CST, at iteration &, the procedure is as follows: )

Strains are obtained from the previous updated displacement vector, i.e.
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{eg} = [B]{ui}l; the residual forces are computed:

Ry} = {py) - IA B1T(D1*{es} da 13)
where {Pj} are the applied nodal forces; a new tangent stiffness is
computed, i.e. [Kp]* = jA (81T[D7]*[B] dA and {pug}* 1s solved. Then the
new displacements are:

{ug ¥ = {up)d + Blaug )t as)

Convergence 1is assumed when both criteria B{Au}*1 < 0.01 1 {ug }R
and I1{Rj}1 < 0.0L I{P;}I are satisfied simultaneously.

For CST elements, details of the computation are as follows: the classical
3-D constitutive stress—strain relation is used, i.e.:

2 1-n)/n
Si='§'c5¢(’— ) €4 , 1 =1,2

1 -
sy =§cee(1 oo g L 1=3 s)

where €g, the equivalent strain is given as 2/3 (812+€22+£32/2) and c
is the constant do/(at»:o)1 n gppearing in the unidimensional law:

_ %o 1/n
= — €
(agg)l/n
1 0
The stiffness matrix [D] is then given by (2/3 cegl'“)/“) 01 0
0o 0 3
The tangent stiffness matrix is given by:
A+B£12 Bel€2 Bel€3/2
353 2
(brlij = |%e; |~ A+BER” BE2E3/2 (16)
J (symmetric) A/2+Bt-:32/4
with A = % cegl—n)/n and B = %C(__l;n)eél-fin)/n.
In the linear incompressible case 10 = 1, [Dp] is reduced to [D].

Initially, a solution is found for n 1 with arbitrary values for €g, @
and o, the material constants. The solutiog obtained at this value is
taken as the initial starting vector for {uj}” at n = 2.  As a convergent
solution is obtained for n =2, say at iteration 5, {ui)s is taken as the
initial starting vector {uj}” at n = 3, and so on. As the solution is
progressing, the system becomes highly non linear, and €g is adjusted to
lower values to prevent divergence. For n > 5, the relaxation factor B
(Eq. (14)) initially set equal to 1 is decreased to values as low as 0.2 in
order to moderate the convergence rate when displacement increments become
too large. Otherwise, the solution "locks” at a certain displacement

without resorbing the residual force.
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DETERMINATION OF CRACK PARAMETERS

The program was tested for a single—edge cracked plate (a/W = 0.6) under
three-point bending. For comparison purposes with the earlier work of
Kumar and co-workers (1981b), the same normalization (per unit thickness)
for the crack parameters was taken, namely:

J = acg g¢ b hi(a/W,n) (p/pg)ntl arn
& = aeg a ha(a/W,n) (P/Pg)" (18)

where J is the applied J-Integral, and 6, the crack opening displacement at
the edge of the specimen, a/W is the dimensionless crack length, W the
specimen width, b, the ligament (W-a) and Py the limiting load, given as:

Py = 0.728 op b2/L

with L, the specimen half-length. The two polynomials h) and hp thus
represent the normalized J-Integral and CMOD respectively. Their value
depends only on the crack length and on the hardening index. Results
obtained in this study are presented in Fig. 3. As can be seen, correla—
tion with the analysis of Kumar et al. (1981b) is generally good, the error
being within 5%. The procedure used for computing J is described below.
The program was run in double-precision on a 3090 IBM mainframe. Four
iterations, complete with tangent matrix evaluation and displacement solu—
tion, were typically accomplished within one cpu minute. The FEM grid
contained 29 substructures, 2872 DOF before reduction, and 920 DOF in the
reduced state.

1.50
1.25
1.0
b, 3}

0.75 b,

0.50

© This study
— Kumar et al, (1981b) |

L L L 0
[} 0.2 0.4 0.6 0.8 1.0

Fig. 3 Normalized J-Integral, h} and crack mouth displacement,
hy for a single—edge cracked plate under three—point
bending (a/W = 0.6)

The J-Integral was computed from the virtual crack extension method due to
Parks. 1In the incompressible state and for CST elements, the following was
used:

: og] 0€E2 de3 OA
J =) Ae (s1 -6_a1—+ S2 a“‘*’ Sag)"’q"f' (19)
e
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in which derivations are approximated by:

of _ 1 _
o - L (arsa) - £(2)
Ag is the surface of element e, ba, the virtual crack advance, and @ the
plastic strain energy density, given as:
n (n+l)/n

5 &0
®= ST ee (20)

Rings of 40 elements were considered in the above summation. The criterion
was_found igsensitive to node shift Aa of the interior contour in the range
102 to 10" (for a =3 and W = 5). Computations were currently done with
20 rings, the first one being ro, the crack tip radius itself. Consistant
results were generally found starting from the 4th ring, located at
distance 0.003 W from the crack tip.

DETERMINATION OF THE HYDROSTATIC STRESS

Once a convergent solution was obtained for the displacements, the incomr
pressibility of the strain components was checked in order to validate the
quality of the solution, and the hydrostatic stress was computed.

The hydrostatic stress (one per element) was introduced as a Lagrange mul-
tiplier in the FEM formulation. This is an alternative for the formulation
of the same problem. In discretized form, for a given substructure:

(K] {us} + [€1T{on} = (Fi} (21)

in which [K] is the stiffness matrix of the unconstrained system, [C], the
incompressibility constraints, as given by Eq. (7), ©p, the hydrostatic
stress, and {Fj}, the nodal forces. Equation (21) can be written:

(c11c1T {opt = (] {{F3) - K1 {uj }}

where [C][C]T is a square (8N x 8N) matrix. LU triangular factorisation
was used to solve this relatively small system. Triangular matrices were
profiled using the sky-line method. An example of normal stress plot
(op = Satop) is illustrated in Fig. 4 for a double—-edge notched plate
under remote tension, 0% = 10.4.

CONCLUDING REMARKS

Used in conjunction with LEFN solutions, the fully plastic solutions
obtained from the program developed in this study yield directly to a com-
plete elastic-plastic solution and to the construction of crack driving
force diagrams for structural integrity assessment. Various planar and
axi-symmetric geometries can be “calibrated” efficiently using this
method. A large variety of ductile steels and non—ferrous alloys can be
described with the single pure-law hardening stress—strain relation. Com—
binations of a power—law at a given strain hardening index with others at
different exponents are also possible for materials exhibiting variable
strain—-hardening rate.
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Fig. 4. Normal stress lines in a double-edge notched plate
(solution for n = 3, 0® = 10.4)
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