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1. Introduction

In this paper transient crack growth under stress wave loading is simulated using a
fine grid finite element mesh. The simulations duplicate exactly the loading conditions and
crack growth observations reported in [1]. The results of the simulation are used to
determine the range of dominance of asymptotic singular field and also examine the
experimental methods of photoelasticity and caustics used to determine Kj. Analytical
results of Freund [2] and Ma and Freund [3] which also address the same problems as the
experiments in [1] and the present numerical simulations are also used for comparison. In
the following, we briefly outline the crack problem and the finite element simulation of crack
growth in Section II. The numerical simulation of the method of caustic is discussed in
Section ITI. Finally in Section IV, dynamic photoelasticity is simulated from the numerical
results.

1I. Transient Crack Growth Problem

A pressurized semi-infinite crack in an infinite plane elastic medium is considered.
This problem is governed by the equation of motion:

Gaﬁ,ﬁzpﬁu in Q (1)
(a, B have the range 2 and summation convention is used) with boundary conditions:

Gy (x,1) =—0pf(1)  on x,=0, x; <0 )

G (X, =0 on x,=0,x;<0

The crack is stationary for t <. Att =T, the crack begins to grow along the line x; =0 ata
constant speed v. This problem was treated analytically by Freund [2] who gave the
variation of stress intensity factor Kj as shown in [3]. Experimental simulation of the same
problem was successfully demonstrated in [1]. However, for running cracks, it was found
that under certain conditions, the dynamic K-field did not dominate the stress field over a
significant distance from the crack tip, particularly where measurements of K were
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attempted using the method of caustics or photoelasticity [3,4]. In the present work, the
above transient crack growth problem is modeled by a very fine mesh finite element scheme,

illustrated in Fig. 1. After space discretization, (1) becomes

Md+Kd=F in Q ©)

where M is the mass matrix, K is the stiffness matrix, F is the force vector and d is the

displacement vector. Discretization of time domain using alpha method yields

M;n+l+(1+a)Kan+l"aKan=i}(tn+a)

where  t,,=(0+0a) ) -y =t,; + aAt

- - - 2 - -
doy =dn+Atvn+ATt[(l—2ﬁ)an+2Ban+l] 4)

The formulation given above is cited from [5]; the program DLEARN in the last chapter of
that book is used in our study. As implemented, DLEARN cannot be used to solve the
dynamic crack growth problem mainly because the size of system of equations is fixed. To

solve the current problem, we implemented a moving mesh procedure and node releasing
technique into DLEARN by the following steps.

Step 1. Although the degrees of freedom in X, direction of the nodes on prospective
crack line (x, = 0, x; > 0) are fixed before crack tip reaches the nodes, they are treated as
free when we allocate space for system of equations.

) Step 2. After space allocation, the equations reserved for nodes on prospective crack
line are deactivated.

Step 3. Moving mesh procedure: Atluri and Nishioka proposed a moving singular
element to simulate dynamic crack growth [6]; here, we implement the moving mesh
concept using four node isoparametric element. This procedure is illustrated in Figure 2. In
Figure 2(ii), when the crack has moved a small distance As, the x; coordinate and data
(displacement, velocity, and acceleration vectors) of node a and it's neighboring nodes are
obtained by interpolation. The mass and stiffness matrices of elements 1, 2, 3, 4, 5, 8 also
have to be reevaluated. The above process is repeated until the aspect ratio of element 8 is
too small; then switching is needed so that the crack can run further. the switching is
completed by discarding the data of nodes e, h, then moving the data of d, g, toe, h

respectively (also ¢, ato d, g and b, f, to c, a), then storing data of i, j obtained by
interpolation to b, f.

Step 4. In Fig. 2(iv), crack tip has run over node f, so the degree of freedom in the x,
direction of node f must be released; this is equivalent to adding another equation to the
system of equations by using the space reserved in step 1

III. Numerical Simulation of the Shadow Optical Method of Caustics

In the thesis [1] by K. Ravi-Chandar, a transparent material Homolite-100 was used in
the experiment and the dynamic stress intensity factor was determine by the shadowoptics
method of caustics. Breifly, shadowoptics may be described as follows: let a family of light
rays fall perpendicularly on specimen near the crack tip. Due to the thickness variation of
the specimen and stress-optic effect there is a shadow spot on the reference plane which is
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i i i ded by
from the specimen. In [1] the size of the shadow spot was recor
glggxﬁfafgtoa&ceevfgy 10 psec; I;(I is then calculated from the size of the shadow spot by the

formula
2 N2r (DY? (5)
KI = ? m (f—c) F(V)

i i i i D is the transverse
is the stress optic constant, h is t}ge undefqrmed thickness, ' €
xgggt:r of the shadow%pot, f, = 3.17, F(v) is a function of crack speed given in [7].

We simulate the experiment numerically by using the shadow optical mapping
cequations relating the screen coordinate to stress field:

of,;
Xuzxu-—ZOa—xu- , a=12

f,(x1,X9) = ch (67 + ©3) ©6)

i i i e on the specimen, and G,, O, are
where X, is a coordinate system on the screen, X, 1s on 3 C :
the princ%pal stresses. Figure 3 shows one shadow spot plot from the numencall sxgnu_lanond.
For each such plot, transverse diameter of shadoyv spot 1s mgasurcd and fomu a( )hlS use
to calculate Kj; thus time history of K; by numerical simulation can be obtained Zas S| ov;/lnllg
Figure 5. The size of the shadow spot depends on Zg and in the simulation, Z, was he
constant at the value used in [1].

1V. Numerical Simulation of Dynamic Photoelasticity

Another common experimental method for the determination of the stress iptcnsni
factor is dynamic photoelasticity. A review of this technique applied to d_ynan;xc crac
prowth is given in [8]. For the case of a stationary crack, the isochromatic fringe loops are
described by:

2
Nf, ¥ K [2 0 2
(To) = -2% sin® 0 + == Kj Goxsin 5 sin® (1 + 2cos®) + o5, (7)

where f is the stress-fringe value, h is the plate thickness and O, is the first rgon-smgutllz:r
order term in the expansion for o;;. In dynamic photoelastic experlmimg, g e
isochromatics are photographed and then (7) is used to obtain Kj and 0. similar
cquation can be developed for the case of a rapidly growing crack.

The results of the numerical simulation were ‘used to examine thfe method of
photoelasticity. From the numerical results, isochromatic fringes (contours ohconst?_m (iil é
6,) were obtained. This is shown in Figure 4. Then, from the simulated 15?10 romadxc;s, s
fringe data (N, 1, 8) were obtained at several fixed radii. These were t ;n u§e:t 11? )
through the over determined least square curve fit technique to obtain Ky arfl }?oxl,(l f§ I(Ojuas
be pointed out that the numerical results do not show a domlnanhqehoht IS l'; ]?‘natic
dctermined by the variation of G,, along 8 = 0 over the region over which the %;oc TO il
data were obtained and thus using (7) implies that we are forcing a K-field. e results o

this procedure is shown in Figure 6 for the same two cases as in Figure 5.

Results from the four different approaches-theoretical, experimental, nurperical caustic
simulation, and numerical photoelastic simulation are compared for two dlffcrex_lt crack
prowth cases.  Kj from all the methods agree very well before the crack starts running.
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After that the experimental K; grows continuously, the analytical one shows a drop followed P
by a slight increase. The numerical results show oscillations that are probably due to the - 600 mm
discrete nature of the nodal release procedure. This aspect is under further investigation. :
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Fig 1. Finite element mesh for dynamic crack growth problem
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Fig 2. Moving mesh scheme for dynamic creck growvth
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Fig 4. Numerically simulated isochromatic finges

750

Stress intensity factor - Mpa ,/ m

1.5

1.0

0.0

1.0

Stress intensity factor - Mpa ‘/ m
o
o

0.0

+
+ + +
+
+
5 +
. T =25 psec T = 25 psec
wt t=l§§§e; t =102 psec
4 Oo e b Co=0:63Mpa
/ = m v =240 m/ sec
T
T +
A " " 1 A 1 d
50 100 150
Time - | sec

Fig 5. Stress intensity factor histories
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Fig 6. Stress intensity factor histories
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