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ABSTRACT

This manuscript describes the two-dimensional non-linear finite element
analysis on compact tension specimens of A-517 structural steel. The
numerical analysis enables us to study the behavior of crack in a typical
ductile material under external loading. Local (or nodal) strain energy
density at all nodes inside and outside the crack tip plastic zone at
several external loads is numerically computed. In the expected crack
propagation direction, i.e., 0 degree in compact tension specimens, the
local strain energy density first decreases with increasing distance from
crack tip but then at a critical distance it increases. This distinct
behavior of the local strain energy density ahead of a crack is load
dependent. The details of the numerical analysis are presented for a series
of compact tension specimens having a wide range of crack length-to-width
ratio (0.25 to 0.88). Based on our numerical results, we have proposed
three parameters: (a) a critical load for the initiation of crack growth,
(b) a crack length dependent local strain energy parameter associated with
the initiation of crack growth, and (c) a material characteristic local
strain energy parameter associated with the brittle fracture or plastic
collapse of the ductile material.
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INTRODUCTION

Cracked ductile structures, at times, pose formidable problems in reliably
predicting the crack growth and subsequent failure of the structures.
Generally, it is accepted that it is difficult, if not impossible, to obtain
exact solutions in ductile structures encountering large scale yielding.
Recent developments in finite element method (Bathe, 1982; Cook, 1981;

Owen and Hinton, 1980; Zienkiewicz, 1983) have led to the numerical analysis
of cracked ductile structures by several investigators (de Koning, 1977;
Hilton and Sih, 1973; Lee and Liebowitz, 1977; Sih, 1974, 1977; Sih and
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Hartranft, 1980; Sih and Madenci, 1983; Twickler et al., 1983). The finite
element method and modern computers have provided advanced tools to carry
out precise stress analysis even in the presence of large scale yielding.
However, in order to develop a better understanding of the mechanical
behavior of cracked ductile structures, there is still a need of further
investigations for reliably predicting the initiation of crack growth
followed by slow (steady) crack growth and fast (unsteady) crack growth
leading to fracture of ductile structures.

The objectives of the present investigation are, therefore, twofold: (a) to
carry out two-dimensional non-linear finite element analysis of high
strength high stiffness ductile material with a wide range of crack length-
to-width ratio and (b) to numerically predict the initiation of crack
growth, slow crack growth and catastrophic fracture.

NUMERICAL ANALYSIS

Approach

A basic characteristic of all materials is their ability to absorb a certain
amount of strain energy irrespective of how they are externally loaded
(Gillemot, 1976). It is likely, therefore, that numerically computed local
(nodal) strain energy density in a cracked ductile structure may reveal some
unique behavior as a result of the crack tip plastic zone. This behavior
may be different from the one in vhich the strain energy decays
monotonically from the crack tip. With this premise, two-dimensional plane
strain non-linear finite element analysis has been carried out to compute
nodal strain energy density in cracked ductile material over a wide range of
crack length-to-width ratios (0.25 to 0.88) at different external loads.

The computer program used in the present investigation is a modified version
of PAPST computer program (Hilton and Gifford, 1983) which uses two-
dimensional 12-node isoparametric element and 4 x 4 numerical integration
(Gaussian quadrature) to evaluate tangent stiffness matrices among other
unique features. The modified program includes an iterative procedure under
the restrictions of problem-dependent convergence criteria generated by the
computer and the calculation of nodal strain energy density.

Procedure

A high strength high toughness structural steel (A-517) has been chosen for
the finite element analysis. This steel exhibits a non-linear elastic-
plastic response. A true stress-true strain diagram taken from published
data (Hucek, 1981) is shown in Fig. 1. A multi-linear approach was used to
model the curve of Fig. 1. Figure 2 shows a typical idealization of one of
the several compact tension specimens used in the present investigation. As
mentioned earlier, the finite element analysis has been carried out for
several specimens having a wide range of crack length-to-width ratio (0.25
to 0.88).

The strain energy density for a nole at (r,0) from crack tip at a particular
external load P is computed as follows: (i) the particular location (r,6)
is first checked by the computer program for yielding at different loads up
to P. (ii) If the yielding occurs, the local (nodal) strain energy density
is computed in the following three steps: (a) a series of values for
numerically obtained effective loads (von Mises stresses) between zero and P
are generated and stored; (b) a best-fit curve is plotted for effective
stress and effective strain; and (¢) the area under the curve, i.e., the
local strain energy density, is nunerically determined. (iii) If the
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True stress-true strain diagram for A-517 steel
(Hucek, 1981).
(1) is used to calculate the local strain energy

Fig. 1.
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Fig. 3. Global analysis data for local strain energy density
(dW/dV) for a crack length of 39.04 mm at a load of
21.35 kN. The plot shows the dependence of the nodal
values of dW/dV on the radial distance of the nodes
from the crack tip, irrespective of their angular
positions.

strain energy density (dw/dv)min obtained from Fig. 5 and other similar
plots. Up to a relatively lower load P; (Region I in Fig. 7) the minimum
value of strain energy density designated as (dW/dV)min remains essentially
constant beyond r, (see Fig. 5, plot corresponding to 5.34 kN as an
example). In Region II of Fig. 7, there is a distinct minimum for dw/dv

at any load P between Pj and P, (see Fig. 5). We propose that the
necessary condition (i.e., the presence of a minimum value of the strain
energy density at a fixed location ahead of the crack tip) for crack

growth initiation has been met at this stage. However, the crack is still
stable (i.e., slow crack growth has not initiated yet) because at higher
loads within this region (P} < P < Pcr) the value of (dW/dV)pyj, increases.
This signifies that the cracked structure is simply gaining more energy
because of the increased load. As soon as the load reaches P.., the
material at (rg,0) has gained the maximum energy that it can absorb and
(dW/dV) i, reaches its maximum value (peak in Fig. 7) designated as
(dW/dV)$ (this should not be confused with maximum value of dW/dV). This

condition of a critical load P, is considered sufficient (i.e., the

minimum strain energy density at a fixed location (rg5,0) attains its
t any load higher than

maximum value) for the initiation of crack growth. A

Pops (dW/dV) i decreases instead of increasing and thus the crack remains
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Fig. 4. Comparison of local strain energy density versus radial
distance for nodes at three different angles from the
crack tip at a load of 18.68 kN for a crack length of
39.04 mm.

susceptible for further growth. Moreover, the end of Region II is
considered the end of "local instability" described here as a phenomenon

satisfying the necessary as well as sufficient conditions for the initiation
of crack growth.

The local instability is followed by stable slow crack growth (Region III)
and fracture (Region IV), see Fig. 7. As explained above, at loads higher
than P.,., the crack remains vulnerable for further growth and stable crack
growth occurs. The end of the stable crack growth (Region III) at a much
higher load marks the small range of 'global instability' described here as
a phenomenon responsible for the unstable fracture of ductile materials.
The load towards the end of Region III is almost equal to the extrapolated
(dotted line in Fig. 7) fracture load P¢ corresponding to a zero value of
(dw/av) in- Thus, any possible significance of the end of the stable crack
growth (Region III) is limited by the stability of finite element solutions
at higher loads close to the fracture of the cracked structures as
demonstrated by our finite element analysis.

Analysis of a wide range of crack length yields (dW/dV)p;, versus load plots
similar in shape to the one shown in Fig. 7 and three such plots
corresponding to three selected crack lengths are shown in Fig. 8. It can
be seen from Fig. 8 that P.,. and P increase for reduced crack length. This
is consistent with our expectation. Also, from Fig. 8 it is revealed that
the ratio of P,,. to P remains constant with a value of 0.83, irrespective
of the crack length. The theoretical significance of this constant ratio is
not obvious. However, it is suggested that this ratio may be a
characteristic of ductile materials. From an experimental value of Pg for
any crack length, the value of P, can be immediately calculated assuming
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Fig. 6. Unique shape of the local strain energy density versus
radial distance (nodes at 0 degree from the crack tip)
curve for a crack length of 39.04 mm at a unique load
of 22.15 kN (termed the critical load for a crack,
39.04 mm in length).

CONCLUSIONS

Local (nodal) strain energy density results have been computed by two-
dimensional non-linear finite element analysis of cracked A-517 steel
compact tension specimens over a wide range of crack length-to-width
ratio (0.25 to 0.88). The premise behind the numerical investigation
is our hypothesis that the local strain energy density should have a
unique "signature" associated with the crack growth in a cracked
structure irrespective of how the structure is externally loaded. Our
investigation reveals that indeed the strain energy density exhibits

a unique "signature" in that in the expected crack propagation
direction in the compact tension specimens, i.e., 0 degree, the local

strain energy density first decreases with increasing distance from crack

tip but then at a critical distance it increases and subsequently at a
critical load it becomes constant. Based on this unique signature, we
have numerically established the following three parameters: (a) a
material characteristic global instability energy parameter (dW/dv)®
equal to 1.93 MJ/m3, (b) a crack length dependent local instability

energy parameter (dW/dV);in equal to about 0.36 MJ/m3, and (c) a material

characteristic non-dimensional parameter, Pcr/Pf equal to 0.83, the
parameter being the ratio of a critical load which satisfies the
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necessar

y and sufficient conditions for the initiation of crack growth

to the predicted fracture load.
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Fig. 8.
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Comparison of dW/dV versus radial distance plots (as o?served
in Fig. 6) for three cracks of different length at their
predicted critical loads. All the three plots exhibit ?lateau
at a unique value of W/dV; this constant energy value is
designated as (dW/dV)p where the subscript p denotes plateau
and the superscript * signifies the critical loads.
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