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ABSTRACT

For plane-strain crack growing in compressible elastic perfectly plastic
material, the near-tip field has 5-sector structure. There were intense
discussions about the difference of solutions. In this paper a correct
formulation is given and the solutions for stresses, flow factor and plastic
strains are given for all the near-tip fields.
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INTRODUCTION

The solution with 4—sector structure given independently by Slepyan, Gao and
Rice for near-tip fields of plane-strain crack growing steadily in incom-
pressible (v=%) elastic perfectly plastic material is now widely accepted.
But there were discussions if compressibility of material is considered
(v<k). Rice et al.(1980) extended the 4-sector solution to the case of
compressible material. Gao(1981) pointed out that the yield condition is
violated in the unloading sector of the 4-sector solution, and gave a 5-
sector solution(Fig.l) with strain singularity ahead of the tip. Drugan et
al.(1982) obtained another S-sector solution without strain singularity
ahead of the tip. In recent works, the present authors noticed that in the
solution given by Drugan et al.(1982) the flow factor A occurs to be
negative and hence the plastic flow law is violated in part of the ''non-
singular plastic sector" C (after the terminology by Rice(1982)). With the
formulation in terms of Airy's stress function, the present paper gives

the correct 5-sector solution. The limiting process of the degeneration of
the present solution to the solution for incompressible material as yvo>X% is
studied by Hwang and Luo(1988). The results obtained coincide with those
obtained by Luo and Hwang(1988) within the framework developed by Rice(1982)
and refined in the spirit of this paper.

371



Fig.1l. The 5-sector construction of near-tip field

BASIC EQUATIONS ( Gao and Hwang(1981a) )

Denote by r, © the polar coordinates centered at crack tip. Take the
leading term of Airy's stress function ¢ (r,0,¥) in the form
$(r.6,v> = rr6,V
where y is Poisson's ratio. Then we have
g, = F"+ 2F Gy = 2F Ore = —F’
where a prime is used to denote derivative with respect 6. Yield condition
can be written as
FF 4 BT +3ee =1 (1)
where
€= %-V € =-1.55n/€
Constitutive law for perfect plasticity is as follows
3 14V G X5y + AS Cij.k = 1,2,3) (2)
eq'= & Uij T ES%jm= ij
For quasi-static steady crack growth, we can assume speed of crack growth
%=1, and then have for any quantity ()

. (3)
C )-—(cose%—slne%%)( )
Then (2) can be rewritten in the asymptotic form (r— 0)
. Ve n 14V o _ X EO .2, (4)
eq—?sm( = Oij %8.10.,)4-7\54] (i,j.k=1,2,3)
In plane-strain condition £33 =0, and from (4) it follows that
o ’ 5
¢+ Lghg EYAS = F74 4F (%)
The compatibility and rate of compatibility equations are, respectively,
1= 2 Fd Ei' EX 39 Ex
€ AN+ 3";' M 2 o T 0 (6)
A=t pa 22 L (w97 PP (V- HTIA - 2 (FTANTVP)
(7)

- 12880 - (VANTMP) - §EPa(AE) =0 (o = 1,2)
The in-plane plastic strain components can be obtained by integration
Xa,
€ = 35 AG=Ta) dxy + € (Tt 0= )

a3 B A (G- 0w dm 4 &g (T+Ta-$)
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x,
€= " rdn (8)

The bordering line I between the ahead plastic loading sector and the rear
elastic unloading sector ( see ¢ in Fig.l ) is called ' the unloading
boundary ''. We restate the theorem for the unloading boundary for the case
of elastic perfectly plastic medium under plane strain ( Gao and Hwang,
1981a, 1983a ) as follows:

Theorem: If on an unloading boundary [ we have at the side of the plastic
sector ( denoted by [(p) )

€0 or Ty Upg = 0 at 9
then
Al =0 (10)
e
It should be noted that the conclusion (10) is, indeed, nontrivial.
Actually, for the case of incompressible material, (10) is not true at the

unloading boundary I between the plastic centered fan sector and the
elastic unloading sector, and we have a discontinuity jump of N across I .
The reason is that both equalities in (9) then hold. It is not intuitively
evident why A should be continuous across ' for the case of compressible
material. This explains why the condition (10) is liable to be disregarded.
We refer the mathematical proof to Gao and Hwang(1981a,1983a).
Besides, symmetry about the crack line requires

F'= 0 as @g=o (11)

and traction-free conditions of crack surface require

F=F'=0 as @= (12)

DISCONTINUITY CONDITIONS

Gao and Hwang(1981b,1983a,b) proved that the rate of compatibility equation
(7) can be rewritten as

&b 2P 3 (13)
A st A"lz—ax}a‘x. + Apiimg t = 0
where
2
Ay = L85 2 Ci-»") + (Ou-O + e
The characteristic equation of (13) is
Ay = 0
which can be satisfied only when
se;= 0 (14a)
Oy = Oz (14b)

(14b) gives the orientation of the characteristic line. Gao and Hwang
(1981b,1983a,b) also proved that only the shear strain may suffer discon-
tinuity. Moreover, the line of discontinuity is certainly characteristic
line, where both of (14) are satisfied.

The reasoning of Gao and Hwang leading to (14) is correct. Its direct
consequence for compressible material (€#£0) is

AFR-1—N
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{9-0 (15a)

Ty= Oy (15b)
(15a,b) are the results obtained later by Drugan and Rice(1984,eq.(4.16b)).
Unfortunately, Gao and Hwang drew am excessive conclusion that the two
conditions in (15) cannot be satisfied simutaneously along a curve [~ , and
hence, the basic equation is elliptic. In fact, if A~o0Winr)/r) in a
zone ( for instance, singular plastic sector in this paper ), then from (5)
we see that in this whole zone

$=0
And discontinuity of plastic shear strain can exist across the charac-
teristic line where (14b) is satisfied.

The contiguity conditions given by 5ao and Hwang(1981a,1983a) for bordering
line r between neighboring sectors are:

tFr.=o G52
'F"r_ 0 (a7
(Lm0 (18)
-p? "

122 L(FT) + Zsing, AF 1 5 € ey () -2 5008, ) = 0 18]

L2 (), + 12 cotg Pt Tr o L e RN

+ s vIAF) + &€ sme— FlE (A * sng F 1A =0
where ( ), is used to denote the jump across . (16)-(19) follow from
continuity of stresses and displacements, while (20) simply denotes the
difference of compatibility equation (7) at both sides of . It should be
emphasized that in deriving (16)—-(20) we have assumed a possible singularity
of curvature of I at crack-tip which has the order less than (gnr)'/r as
r—= 0. Besides, these contiguity ccnditions are correct since its derivation
is not at all influenced by the abcve-mentioned excessive conclusion drawn
by Gao and Hwang.

(20)

ASYMPTOTIC SOLUTION OF NEAR-TIP FIELDS

The 5-sector structure is shown in Fig.l, where A-——constant stress sector,
B---singular plastic sector, C and E-—-nonsingular plastic sectors, and D-—-—
elastic unloading sector. The solutions for various sectors are as follows.

Sector A
F=Ez’(b+cosze) (21)
A= OW) -
Gy Te L 512 Oz=Te (br1) 0=0 (23)
From (1) and (8) we obtain, respectively,
$=0 (24)
€= 0 .8 =12) (25)
Sector B
— T
F=Fib-200-3} A= AthF + 00}
(26)
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It follows from the yield condition (1)

emg (27)
At the bordering line la (8=7/4), the first 3 contiguity conditions (16)-(18)
are already satisfied. From the 4th and 5th contiguity conditions, we have

lE{.lr‘—%(3+4e)-‘E'h% (28)

A=-FGrolt v op (29)
plastic strain components in Sector B follow from (8)

£l == - 22 (F+e)sne g + 00 (30)

r_ 4on(8/2) R

gh==2 (3 +s){cos§(lnm(',:)+2cose)-1}¢n§+ou)
Sector C

A =06 S0 31)
Making a consistent choice of sign, we obtain from (1)

e=-B(g-gFt-p E2)
Then from (5) and (7), we have

3 in® ” ’ 3 »
A= g S (F7+4F) U+ gag PO (33)
JE-(}-fed-%F”Ar'%F—Fi;)(F”q. 4F') = C,cote + Cz (34)

where Cy, Cz are integration constants. It can be proved that the plastic
strain components suffer no jump across g . From the 4th and 5th contiguity
conditions (19) and (20), it follows, respectively,

¢ =-Z Z (3+4e) sing, (35
Co = —2 2 (344€) (2 - 038

F, ¢ and A in Sector C can be obtained by integrating (32), (33) and (34).
Since & =0 at I's , integration of (34) should be started from an angle in the
near neighborhood of 6y ( say ©=6, +0.1° ). Their starting values are taken
from the power series expansion at 6y obtained from (32),(33) and (34):

2
F=2{b-2(6- D} - ©(0-0) + L T ite T (800 + -

—_ _(3140T.
$ = - meione, (0-807+ -

(36)

The integration of (34) for F is performed from 6 +0.1° in increment of
0.0005°, and ¢ and A can be calculated from (32) and (33). The angle 6,
where A =0 corresponds to the unloading bordering line Tc .

Sector D

In the elastic unloading sector, A=0, and

&y = EX (0,8 =1,2)

Assume

AFR-1—N*
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42" _ D
dxz EH
Then the solution of equation (6) is

F-'—_E—),T{D.-'-D,e-tn,coszeﬂhsinze +F*} &7
where

F*= - Bt {(cosz8-1)fnsine + (8 + Fcote) sinze} (38)
The contiguity conditions (16)-(20) at [, lead to

D, + D,6,+ Dy COS26, +DySIN26; + F*(8,) = "E"’ F.(8,)

D, - 2D, 5in20, + 2D4C0526; + F*(6) = 2 £/ (8,

~ 4D,C0526, — 4Dy Sin26, + F""(8) = =22 E2 (o) (39)

Dl"%{z

D,= C

where F., F/, F{ denote values in Sector C. The above equations can be used
for obtaining Dy, D, , Dy, Dy and L, for given 6, and 6,. From (5) we get

&= F'+4F 4§ (40)

where the constant G can be obtained from the continuity of € across ¢ .
The plastic strain components in Sector D are

€ = - Enm — Z (3+4€) L sin0,In Asine: + 0wy

: 41
&= %’-(54-45)% feosF( Qn—};"'%/’—:))— + 2¢036,) — 1}%——-’“’,}:9' +OH et
Sector E
A =0 €20 1555

The governing equations for § , A and F in Sector E remain to be (32), (33)
and (34). 1t follows from the &4th and 5th contiguity conditions that the
constants C; and C, for Sector E remain the same as for Sector C. The
initial values necessary for starting the integration of (34) are offered by
the first 3 contiguity conditions at [p.

Boundedness of each term in (5) as 6—»w implies

¢—o0 as @ (43)

Hence the integration of (34) cannot be performed directly to the free crack
surface (8=m). It is proved by Huang and Luo(1988) that the condition F’=0
in (12) can be replaced by

Fr= - T+ 2(F+ 3€8H T (44)

where "~ denotes the value taken at 8=w-7 ( say, n:O.l' )«

NUMERICAL RESULTS

For the asymptotic solution, we have to solve the differential equation (34)
in Sectors C and E, and to determine constant b and angles 6;, 6, and 6; for
s, e , M (Fig.1l). It costitutes a one-parameter (i.e. 6y ) shooting
oroblem, which can be solved by .the following steps of iteration:
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1. Assume a value of 8 ;

2. Determine C; and C; from (35);

3. Calculate from (36) the initial values necessary for starting the
integration of (34) from 6=6,+0.1° (take, for convenience, for the time
being b=0 );

4. Integrate (34), calculate pointwise values of A , determine the angle
8, for e from the requirement (10);

5. Calculate from (39), (40) the constants Dy, Dy, Dy, Dy, D, and G for
Sector Dj

6. Determine from (1) the angle 83 for the reloading plastic boundary lp ;

7. Calculate from the first 3 contiguity conditions the initial values at
I necessary for starting the integration of (34);

8. Integrate (34) from [p to 6=w-1 (say, 7M=0.1°), and examine whether
the condition (44) is satisfied. 1If it is not, then repeat the above set of
steps with newly assumed value of 8. The procedures are continued until
(44) is satisfied within prescribed accuracy;

9. Determine the constant b from the condition F(W)=0 (see (12)).

[n the solution by Drugan et al.(1982) the flow factor A turns out to be
negative, hence the plastic flow law is violated in a portion of Sector (o
The reason for this is that Drugan et al.(1982) disregarded the condition
(10) implied by the " unloading boundary theorem ", replaced it by a
superfluous condition (43), which is actually a consequence of the equation
(33) ( or (5)) itself, and converted the problem to a two-parameter ( i.e.
8, and 8, ) shooting problem. Besides, the Gao's solution(1981) is not
acceptable, since it does not degenerate to the corresponding solution for
incompressible materials as y » 5 because of the existence of strain
singularity ahead of the crack-tip.

The full near-tip fields for stresses, strains and flow factor can be
obtained. Here only angles 6,, 82 and 83 are compared in Table 1. the
present results shown in Table 1 coincide exactly with the value obtained by
Luo and Hwang(1988) within the framework developed by Rice(1982) and refined
by the present authors.

Table 1. Comparison of 6,, 6, and 8; between the results
of present paper and those by Drugan et al. (1982)

© 8 63
Present results 110.09° 118.20° 160.42°
Drugan et al.(1982) 110.26° 123.13° 160.38°
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