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ABSTRACT

The interaction of a stress pulse with configurations of a macrocrack and a
neighboring microcrack is investigated. A time-domain boundary integral
equation (BIE) method has been applied to obtain time histories of the
dynamic stress intensity factors. Parametrical studies show the effects of
the microcrack on the pulse-generated crack-tip fields of the macrocrack.
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INTRODUCTION

This paper deals with the investigation of elastodynamic crack-tip fields
generated by the interactions of a pulse with a macrocrack and a neighboring
microcrack, as shown in Fig. 1. Macrocrack-microcrack configurations are
often observed in brittle materials such as ceramics, rocks and concretes.
In such solids the high level of stress and deformation in the vicinity of a
crack tip gives rise to microcracking and/or the formation of microvoids in
a confined zone surrounding the macrocrack tip. The existence of
neighboring microcracks may significantly alter the stress intensity at the
main crack tip. Depending on the size and location of microcracks or
microvoids, their presence can either increase the stress intensity factors
(stress amplification) or decrease it (stress shielding or toughening).
Knowledge of the dependence of the stress intensity factors on the
microdefects will assist in predicting macrocrack propagation. For static
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loading several results can be found in the literature. For dynamic loading
Fhe effects of microcracks on the macrocrack have not yet been investigated
in detail.

A time-domain boundary integral equation (BIE) method has been applied to
obtain time histories of elastodynamic stress intensity factors for the
macrocrack. Parametrical studies show the influence of the size and
location of the microcrack on the effective stress intensity factors of the
macrocrack. Particular attention has been devoted to dynamic overshoots of
the stress intensity factors. For step-stress pulses the dynamic overshoot
phenomenon has been noted in [L]-[2].

FORMULATION

Two configyrétions of an unbounded, homogeneous, isotropic, linearly elastic
b?dy contaln}ng a macro-crack and a neighboring micro-crack are shown in
Fig. 1. An incident stress pulse of the form
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Fig. 1: Macrocrack-microcrack configurations
in( £) = o 3
aaﬂ X, aaﬂH[th - (x1+a)s1n¢ - xzcos¢] (2.1a)
interacts with the two cracks, and generates a scattered field. Here
_ A+2u-2ucos?¢ psin(2¢)
P -
. 2.1b
of psin(24) A+2p-2psin2é , G2-1h)

vhefe A and p are Lamé’s elastic constants, and ¢ denotes the angle of
incidence. Also H[+] denotes the Heaviside step function and

ey = J(Z+2p)/p is the velocity of longitudinal waves. The propagation
dfrection of the incident pulse is in the x,X,-plane, and the analysis of
this paper is two-dimensional and for a state”of plane strain. 1In terms of
the incident field, o ,(x,t), and the scattered field, asc(x t), the total
stress field may be written as ap=n

0ap i E) = TLpx,E) + Oig(x, ), @ f = 1,2, (2.2)

Since the faces of the cracks are free of tractions, the following
conditions follow for the scattered field
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sc in
fu (E't) = - fa (f't) for X € Fl + F2 2 (2.3)

where £ = 9,8" denote the traction components, and I'; and F2 define the
faces of the gaérocrack and the microcrack, respective}y. The“initial
conditions for the scattered displacement field are

wSC(x,t) = WS(x,©) = 0 for £ < 0. (2.4)

The integral representation for the components of the scattered stress may
be written as

c

B

where n, are the components of the normal vector to I' = Fl + Fz, and
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(gp,t) = - { { Kgﬂ5€(§p,t;§,1)Au6(§,1)nedsdf, Xp * r (2.5)
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= 2.6
Kogse = MapZser,y ¥ #%6ca,p * T5ep,a (2.6)
Equation (2.5) yields a set of BIE's by using fa = aaﬂn and by taking
x. - T'. Unfortunately, such BIE's are hyper singular wgen the observation
point x_ and the source point x coincide [3]1,[4]. To reduce the high

singulE jties a regularization procedure has been developed which results in
the following discretized BIE's [4]

S

in J t j+1 sj+1
- 1 s 1
£ (xp. 1) nﬂ(§p) = J HaﬂéAUS I HaﬂSGAuAué,Anuds
j=1 o S . s.
J J
Sj+1
2 ¢
+p £ HaB8Au6ds dar, 2.7)
J
in which s, and s. , are the endpoints of the j-th element, €3 is the two-
dimensionai permu&a%ion tensor, and K
G G G
1 - .
Haﬂﬁ ASaﬂe’yca&c'y + ”(Eﬂeaéeu + eae”&eﬂ> . (2.8)
G G G
2 - 2.9
HaﬂS Aﬁaﬂu67n1 + ”(u6anﬁ + uéﬂna) , ( )

where ug and a? denote the elastodynamic Green’s functions. It should be
noted héZe that ffle singular terms in the simplified BIE's (2.7) can be
integrated numerically and analytically without difficulties.

NUMERICAL IMPLEMENTATION

To solve the BIE's (2.7) discretization of time t is necessary. Here
we have used equal time increments At, where t_ = nAt (n = 1,2,+++N) denotes
the time after the n-th time-step. The unknown crack opening displacements
Aua(z,r) in (2.7) are approximated by the following interpolation functions

n n

bu (x,7) = B % #j(g)n (f)(Aua)j - 3.1
jn

In our analysis the function p.(x) has been taken to be unity over each

element except for elements near cr ck tips. For these elements a special
shape function

py@ = @ (3.2)
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i§ used to describe the proper behavior of Au_ at the crack tips x, = %
Higher order shape functions for n''(r) are deSirable since Eq.(2.7} cont
not only the functions Au_, but also their derivatives.
piecewise linear shape function

a.
ains
In this paper the

n 1- r:tmt , |r-nat| < at
n (1) = (3.3)
0 , otherwise s
is employed.
For each time-step Eq.(2.7) can be rewritten as
; N J 3
j+1
£ %x,,t ) =n(x) T I [L““‘ (%53%)
Zpi = XpiX)p, (%)
a P’ m B ~p n=1 j=1 afs " ~P jt= s.
J
s,
3+l ;mn . a
£. Laps (Xpi%) x5 €y,n,ds
J
sj+1 mn
. n
+0 { Mg (XpiX)m; (x)ds ](Au5>j , (3.4)
J
In these equations the following abbreviations have been used for
convenience
— (n+l)At i
L P - 1 .
apr e = G i T 6 (3.5)
mn (n+l)At iy
M . - 2 . ,
oy (Epi %) f(n_DAt B2, (Xp, tpix.m)n (7)dr. (3.6)

With Eq.(3.3), the time integrations in (3.5) and (3.6) can be performed
analytically. For details see Reference [4].

By choosing J collocation points on I' and N points for t, and requiring that
Eqs.(3.4) are satisfied at each discrete point x; (i = 1,2,-++J), we obtain
a system of linear algebraic equations which has been solved numerically at
each time t = mAt (m = 1,2,-:+N). Spatial integrations of regular terms in
(3.4) have Been performed numerically by using an 8-points Gaussian
quadrature formula for the constant shape function, and by using an 8-points
Gauss-Jacobian formula for the "crack-tip" shape function. The singular
terms have been integrated analytically and numerically.

RESULTS

The dynamic stress intensity factors can be calculated by using the
following well-known relations

*
KI(t) _ Elzz—_ ) 1 AuZ(Xl’t)
2im (4.1)

% 4(1-v — 3
KII(t) ) xl-tia (a+x1) : Aul(xl,t)

once the crack opening displacements have been calculated by the numerical
scheme described in the last section. 1In Eq.(4.1), "+" indicates the tip at
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x, = a and "-" indicates the tip at X, = -a, while v denotes Poisson's
ratio.
All calculations have been carried out for a Poisson’'s ratio v = 1/4. The

geometrical configuration is shown in Fig. 1. The principal (macro) crack
has been discretized into 50 elements of equal length, and a proportional
number of elements have been used for the microcrack.

For b/a = 0, the configuration reduces to a single crack of length 2a. This
case was used to check numerical results obtained by our method. The
agreements with Thau and Lu’'s results [2] was found to be very good.

The time increment was selected as c At = 0.08a. The influence of At on the
stability of the time-stepping schemé has been studied numerically, and it
was found that too small a value of At may cause instabilities at large
time. The same conclusions have been drawn by Nishimura et al.[3]. The
time increment chosen here always yielded good results, at least in the time
interval considered here (100 time-steps).

For b/a = 0.1, d/a = 0.015, and for normal incidence, ¢ = 0°, the dynamic
stress intensity factors are shown in Figures 2a,b,c versus the
dimensionless time th/a, for various values of the angle of crack
inclination, a. All - results have been normalized by the static stress
intensity factors of a single macrocrack under the corresponding static
load. Figure 2a shows that, as expected, the presence and orientation of a
microcrack do not influence the left tip of the macrocrack at small time.

However, after c t/a = 3 the difference in K. becomes somewhat distinct.
It is, however, €vident that the crack-tip away from the microcrack is not
significantly affected by the presence of the microcrack. The contribution

of the inclined microcrack to the Eil—factor is also negligibly small in the

sense that Ki < 2%, and the results are not shown here. The presence of
the microcraci, does, however, give rise to a substantial increase of the
Mode-I stress intensity factor at the tip adjoining the microcrack (Fig.

2b). The i;-factor decreases with increasing inclination angle a, while a

] =+ . .

complicated dependence of the K. -factor on a is noted (Fig. 2c). At both
tips of the main crack, the maximum dynamic stress intensity factors exceed
the corresponding static values, which are reached at large time t.

Figures 3a,b,c show the normalized dynamic stress intensity factors for the
configuration depicted in Fig. 1b., for normal incidence of a stress pulse,
¢ = 0°. The geometrical parameters are b/a = 0.1, d/a = 0.115. The time

histories of Ei (Fig. 3a) for various a are very similar to those shown in
I1 it
increases with decreasing a. Maximum dynamic overshoots of K, are induced
for the collinear crack configuration (a = 0°), while the presSence of a
slightly inclined microcrack (for example a = 20°) gives rise to a larger

= . & & =t
Fig. 2a. Again K. is very small. The amplification in KI-faCtors

K;I value.

The dependence of the dynamic stress intensity factors on the distance of
the crack tips and the size of the microcrack has been investigated for
collinear cracks, again for normal incidence. For a fixed half-length of
the microcrack, b/a = 0.1, and for various crack-tip distances, d/a, the
time history of the normalized dynamic stress intensity factors is presented
in Figs. &4a,b. Due to symmetry with respect to x, = 0, the Mode-II stress
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! intensity factors are identically zero, K 1.~ 0. The variation of K_ (Fig. i 1.2
4a) with d/a is fairly smooth, since the Ieft tip of the macrocrack 1is less 1.2 — o :
affected by the microcrack. The Mode-I stress intensity factor of the crack - 0° 1.0
tip adjoining the microcrack, f, increases, however, substantially with 1.0 — 40° ’
decreasing crack-tip distance d/a, as shown in Fig. 4b. Considerable . ” 0.8
amplifications in k' occur for very small values of d/a. Both K’ and Ei, 0.8 -_—_ £0e
assume the values for a single solitary crack of half-length a as d/a - =, 0.6 %& 0.6
Finally, the dependence of the normalized stress intensity factors on the = e 0.4
dimensionless half-length of the microcrack, b/a, is shown in Figures 5a,b. 0.4 — A .
Results are presented for two collinear cracks with d/a = 0.05, and for - 0.2
¢ = 0°. The peak Ei-factor increases with increasing b/a, but it is shifted 0.2 I ’
to somewhat larger time c, t/a. The K-factor for larger b/a can be slightly 0.0 T 0.0  speEseeessnnERRRRERRERE
smaller than for a shorter microcrack (smaller b/a), which is in contrast to . Ty 2:0
the static case (see Yokobori et al.[5]). Figure 5b shows the variation of 2.0 1.8 (b) o
K} with the microcrack size b/a. As expected, a larger microcrack gives 1.8 (b) o A 0°
rise to a larger amplification of the stress intensity factors. 1.6 .t 0° 1.6 ]
T o . 20°
1.4 20 1.4 7
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