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ABSTRACT

A combination of collocation method and elasto-viscoplastic theory is used
to calculate J-integral of internal crack specimens. The results obtained
compare very favorably with those obtained by finite element method, and
less computer time is required.

INTRODUCTION

The elasto-viscoplastic theory can be used as a unified numerical solution
approach for visco-plasticity, plasticity and creep problems in solids[l],
and it was found that the steady-state solution of the viscoplastic problem
is identical to the corresponding conventional static elasto-plastic
solution, for instance. On the other hand, boundary collocation method has
been found to be a simple, effective and accurate tool of analysis for
calculating the stress intensity factors of fracture specimens. It has been
shown that the combination of the elasto-viscoplastic theory and the
collocation method provides a useful approach to the solution of a series of
elasto-plastic fracture problems. In this paper, the proposed method is
used to calculate the J-integral value of center-cracked and slant-cracked
plates. Numerical examples show that this method offers good accuracy and
requires less computation time.

BASIC FORMULATION

(1) Theory of elasto-viscoplasticity

For elasto-plastic solids, the total strain, e, can be separated into

clastic, eg, and viscoplastic, Eyps Components. The relation is expressed
as >

€= € + Eyp (1)

The total stress depends on the elastic strain component according to
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2
6 = Deg = D(e = &yp) (2)
where D is the elastic matrix.

The viscoplastic flow rule is

. oF (3)
evp= Y < & (F) >'a;

where (.) represents differentiation with respect to t%me, Y i§ a fluidity

parameter controlling the plastic flow rate, and ¢(F) is a positive

monotonically increasing function

o (F) for F > 0 -
< o(F) > = {
F<O0
A simple form of &(F) adopted in this paper is
d (5
o(F) = P

where F is the Mises yield furction, and og is th? uniaxial yield stres:;1 be
The strain increment A(evp)n occurring in a time interval Atp=tp4]1-tn ©
expressed by difference formula

Bleypdn = (Evp)idtn (6)
According to eq. (2), the stress increment Aop is
Aoy = Dldeq = Aleyp)n] -
= 0(oedn ~ A(va)n
and the total stress at time Cp4] is
optl = On + 80n (8)

i i i t can be calculated. When
From eq. (6), the viscoplastic strain incremen 1 H
plastic probiems are to be aralyzed by this method, the time factor %sfnoth
important, and Yy can be takern as 1, At can be any value but must satisfy the
stability limit according to Ref.[4].

(2) Collocation Method

Using eq (2), stresses in plastic condition can be written in tensor form

as
0ij = Aﬁijﬁkk + 2Gsij - CZIJ) e
where 10)
o¥P = 26y epk - 2035 (

Sutstituting eq. (9) into equilibrium equation, yields

. = (11)
(>‘+G)uj,ji + Gui,jj + fl =0
where
vp (12)
£ = X 7 %4
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fq. (11) has the same form as that of elasticity, and the only difference is
that fi; here depends not only on the body force, but also on the plastic
detormation.

fimilarly, by substituting eq. (9) into the stress boundary equation, then

[XGij“k,k + G (“i,j + Uj’i)] nj = Fy (13)
where
vp
Fi = Py + 0ij Dj (14)

lere Fj is dependent on both the loading and the plastic deformation.

Suppose the displacement uj has the approximate expression
Gy = 1 (15)
uj *uy = I ck V¥
1 i kel k Yk
where ¢1,..., Pk are k appropriately chosen functions, the coefficients cy
are to be determined by collocation method.

Substituting eq. (15) into egs. (11), (13) and displacement conditon, .they
will result in the residuals for the equilibrium equation, stress and
displacement boundary conditions, and they are given by
L
Rg = (A + G)ﬁj,ji + Gﬁi,jj + £y in domain R

R

[

s = [A6ijuk,k + G(Ug,5 + ug,i)Iny - Fy on stress boundary

Ry = 4§ — Uj on displacement boundary
or in matrix form
{R} = [K]{C} - {F'} (16)
By using a least square concept, a set of equations can be obtained by
minimizing the square of the residuals with respect to the parameters {C}.

Thereafter, the coefficients of displacement function can be determined.

(3) Displacement Functions

The first step in the solution by the elasto-viscoplastic method is the
calculation of elastic stress field. If some collocation points are found
to have been yielded, stress relaxation can then be carried out. It is
therefore necessary to select suitable displacement function yi in eq. (15) «
for center—cracked plate problems, some stress functions which satisfy the
harmonic equation in the domain are used to calculate the stress intensity
tactor by the boundary collocation method[5,6].  The corresponding displace-
went functions may then be taken as the basic part for yYg in eq. (15).
Taking into account that stress relaxation must be carried out on both the
domain and the boundary, a complementary part of the displacement functions
in the form of a power series of the x and y coordinates have to be added.

This is used for equilibrium corrections when a point is under plastic
condition.

According to Ref. [6], the complex stress funcitons ¢(z) and w(z) may be
given as
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" " 2k-1
¢(z) = Vz? - a® I Ey z22k=2 + 3 Fy z X7
= k=1
! an
M M 5
w(z) = vz? - a2 © Ey 22k=2 3 Fy z2k-1
k=1 k=1
where a is half crack length, and Eg, Fyg are undetermined coeffiiiz:::;
They are real for symmetric problems, and are complex for genera s
i.e.
Ek=Ak+in} (18
Fp = Cx + 1 Dy
i h
The solution of the linear elastic plane problems may be obtained by the
formulael?
ox + oy = 4Red(z)
z -2)9" (19)
oy = itxy = o(z) + z) + (z-z)e'(2)

ut iy = o [ké(2) - (@) - (2-2)8@) ]

where
o(z) = ¢'(2), 9z) = w'(2)

From eq. (17), &(z), Q(z) and %' (z) can be determined, and the corresponding
stresses and displacements can be calculated by eq. (19).

(19) are now taken as the basic
It is obvious that the
satisfy the harmonic equation

The displacement functions calculat?d by eq.
part of the approximate express?on in eq. (15) «
relevant stresses have a 1/¥1 singularity, and
and symmetric condition.

The complementary part of the displacements, i.e. the non-harmonic
functions, is assumed as follows

N L X A
u= I L cij x21 sz'l
i=1 j=1 {269
N L . i
v = 1I L dij x2i-1 yZJ
i=1 j=1

i u i . (15).
The combined form of displacement functions are taki? iz Erl:oigdaiy )
i i the equilibrium equatio

They are then substituted into A A

iti i ints, then the residual equati
conditions at the collocation points, . uing the

i i ethod, a set of equations
obtained. By using least square me i S
coefficients of displacement functions can be formed and can be wri

the following matrix form
(21)
[K]{c} = {F"}

where [K] matrix can be determined from the coordinates of collocation
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points, {C} is the coefficient vector {Ak,Bk,Ck,Dk,cij,dij}T which remains
to be solved, {F'} is the vector depending on boundary conditions and plastic
deformations, and can be expressed as

vp

~%13.3
vp

{F'} = { By + %3y . ny =5

ui

huring the first calculation step, the viscoplastic stresses and their
derivatives are assumed to be zero, {F'} can be determined by the boundary
vonditions by eq. (22). If the effective stresses of at some points are
greater than the yield stress og, ch are calculated according to egqs. (6) -
(8), and U%R,j by finite difference method. Hence {F'} is obtained by eq.
(27). The ’iterative procedure is repeated until the effective stresses at
all points are no greater than og. The whole iterative procedure is
repeated again with each load increment until the final loading is reached.

(4) J-Integral

it has been shown by Ricel8] that the following integral quantity is path
independent:

J = J [ Wdy - T %ﬁ dsJ 23)
r

where T is the traction vector on a plane defined by the outward drawn
normal, u is the displacement vector, W is the strain energy density and the
v direction is taken normal to the crack line.

When the stresses, strains and displacements have been solved, J-integral
can be calculated along a given path. For a general elasto-plastic case, W
cuan be separated into its elastic and plastic components
W= we + wP (24)
where W€ is given by
1
we = 3 0ij (Eij)e (25)

in which (eij)e denotes the elastic components of strain. The plastic work
contribution is given by 3]

1
P - P
W oy dey (26)
0

where o4 is the effective stress, where 0jj is the deviatoric stress
components, and Eg is effective plastic strain and can be calculated by the
components determined by eq. (6).

CENTER-CRACKED PLATE

In two-dimension crack problem, J-integral in eq. (23) can be written as
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J= j {w dy - [(oxnx + Txyly) o + (txyng + Oyny) %% ] ds} 27
i
For plane stress case, 0y = Tyz = Tzx = 0,
We = 5% [(0Z + 2) = 2v0,0y + 2(14V) Ty (28)
and for plane strain case, 0 = V(9x + Oy)s Tyz = Tzx = 0,
We = 5% [(1_v2)(0; + 0;) - 2v(1+v)oxoy + 2(1+v) TZy] (29)

The effective or equivalent plastic strain for plane problems is given by
the following expression

Z 2z 2 3 P 2
deP =/ig /el - aeh)” + @)+ (@ed)” + 35 (@y’xy) (30

At any plastic point de? can be calculated by the stress components.

Based on the above analysis, the calculation of J-integral can be performed
along a given path. Because of the characterization of path—ln?ependence,
it is convenience to chose the path which composed by several line segments
which are parallel to the cocrdinates axes as shown in F%g. 1. In the
center-cracked plate, the symetry leads to choose half integral path and
the total J-integral is twice the value.

Along line segment AB in the above figure, ny = 1, ny = 0, ds = dy, from
eq. (27) the increment of J-integral can be calculated by
LY
oy o 31
JAB = JO [(W& + WP) + (ox % + Txy ax)] dy (31)
Alone BC, ny = O, ny = 1, dy = 0, ds = -dx, then the increment becomes
[
Jdu oV (32)
= = Yya
Jge = J g ax ¥ %y Y
X
Alone CD, ny = -1, ny = 0, ds = -dy, the increment is
° 3
3u v (33)
e - —_— —_—
Jep = JLY (W + WP) [C™ 5 T Txy Bx)] dy

When the coefficients of the complex stress functions have been determined,
the stresses and the displacements at any point of the plate can be
calculated by the related formulae. Then du/dx and 9v/ox can be calculated
by finite difference method, and the integral can be evaluated by the
numerical quadrature formulze.

In order to compare with the existing results in Ref. [9] where FEM is used,
same dimensions, material properties and applied loads of the plane str?ss
specimen are assumed in the solution. There are altogether 85 collocatlgn
points with 47 points in the domain and 38 points on the bounéary: ‘In t.e
calculation, every side of the integral path shown in Fig. 1 is divided into
a certain sections, for exanple, 10 sections.

512

In order to compare with each other, the distances of the segments Ly and Ly
are equal to the radial distance in calculation by FEM. For different
integral path and loading, the J values by collocation method (CM) and by
¥EM are listed in Table 1 and shown graphically in Fig. 2 where r/a is the
yatio of the path radial distance to the half crack length.

¥rom Table 1 and Fig. 2 it can be seen that the J-values by the two methods
coincide with each other generally. The difference of the average value
according to a certain loading is about 5%. For the path near the crack
tip, J-integral values by the two methods are far less than the average
value. The reason is that the deformation near the crack tip is very
violent. This must influence on the conditions of J-integral. Sumpter and
Turner [10] have performed elastic-plastic finite element computations (using
an incremental flow rule) on a series of center-cracked plates. The J
contour integral calculated in the usual way was found to be path independent
{or intermediate and large contours (path length 0.5a to 10a). According to
the above conclusion, it is not surprised that the J-integral values of the
small radial distance in Table 1 or Fig. 2 are not satisfactory. Except
{hese cases, the stabiity of calculation and the coincidence of the two
methods will be better.

In the above calculation by the collocation method, every side of the contour
{» divided into 10 segments. Similar calculations have also been performed
for 5, 15 or 20 segments, results for different segments also coincide very
well and the difference is less than 1%. This shows that the stability of
the calculation by CM and elasto-viscoplastic theory is satisfactory.

Table 1. J (xo;bxlO'“) values by CM and FEM

r/a 0.1712 0.3248 0.4331 0.6102 0.7480 0.9744 average
o/og value

cM 0.2397 0.2402 0.2401 0.2396 0.2390 0.2382 0.2394
U4 gy 0.2474 0.2556 0.2548 0.2558 0.2565 0.2579 0.2545

M 0.4536 0.5109 0.5205 0.5107 0.5018 0.4874 0.4975
0,5 FEM*

cM 0.6094 07.197 0.7593 0.7840 0.7822 0.7614 0.7361
V0 gy 0.7136 0.7645 0.7697 0.7837 0.7831 0.7904 0.7675

* When o/og = 0.5 there are no calculated data listed in Ref. [8].

SLANT-CRACKED PLATE

The calculation of J-value for mixed mode problem can be carried out as for
center-cracked plate. According to the definition of J-integral and the
angular period of m with respect to the center of the crack, J-value can be
ralculated along two half integral path as shown in Fig. 3, the total J-
integral is

J = J; + 3y = (Uppt Jpct Jep) + Uprgrt Jgrgrt Jorp?) (34)

where Jyp, Jpc and Jop can be calculated by eqs. (31) - (33), Jarprs Jprer
and Joipr can be calculated in the same way, the difference is only that
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along B'C', ds = dx.

For the mixed mode examples shown in Fig. 3, the collocation points and
the plastic zones are distributed in Fig. 4. The material constants are:
E=2x104, v=0.3, og=1. The related dimensions are: h/b=2, a/b=0.2475,
a=45°. J-integral values have been calculated along different paths. The
radial distances of the path, r/a, are taken as 0.05, 0.075, 0.1, 0.125,
0.15, 0.175, 0.2 respectively.

(1) Plane Stress Case

In the first step, the stress intensity factors are calculated. In elastic
condition, the relation between the J-integral and the stress intensity
factors of the mixed mode fracture problem is

1
= = (K2 + K2
J E' ( 1 II) (35)
where E' = E for plane stress case, and E/(1-v2) for plane strain case.

By boundary collocation method, Kp and Kyy for the case have been calculated,
KI/(G/;E) = 0.6090, Ky1/( o vVma) = 0.5424. TInserting them into eq. (35),

J = 0.5236x1072. The calculated J-—values in the different loading and paths
are shown in Table 2.

In Table 2 there are two groups of J-integral when o/og = 0.45, one is at
the first step and the deformation is assumed elastic, the other is
calculated by stress relaxation using giscoplastic theory. At the first
step the average J-value is 0.5108x107°. This differs from that calculated
by eq. (35) by 2.5%Z. From Tsble 2 it can be also seen that the difference
among the J-values in a certain loading is not large. This means that the
path independence of J-integral for mixed mode fracture problem can be shown
by the calculation using CM nd elasto-plastic theory.

Table 2. J (xoébxlO—S) values for the mixed mode plate
(plane stress)

r/a 0.05 0.075 0.1 0..125 0.15 0.175 0.2 average
value
alog

(e) 0.5229 0.5218 0.5198 0.5162 0.5100 0.5002 0.4853 0.5109
0.45 (p) 0.6921 0.6870 0.6739 0.6572 0.6375 0.6149 0.5896 0.6503

0.6075 1.034 1.105 1.114 1.102 1.078 1.046 1.007 1.0694
0.6413 1.097 1.198 1.217 1.212 1.190 1.159 1. 119 1.1703
0.675 1.156 1.281 1.310 1.310 1.294 1.263 1.222 1.2623
0.6856 1.202 1.351 1.387 1.388 L3711 1.338 1.294 1.3330

Note: when o/og = 0.45, J values have been calculated at the first step
(elastic) and the last step (plastic). Both groups are listed.

(2) Plane Strain Case

For the plane strain case J-integral has also been evaluated and shown in
Table 3. At the first steps i.e. elastic calculation, the average J-value
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{s 0.5728x10~5 while it is 0.5882x10~5 by eq. (35) using the boundary
collocation method. The difference between them is about 2.57. From the
table it is also seen that the J-integral can be evaluated by the CM and
¢lasto-viscoplastic theory, and the path independence of J-integral can also
be shown by the calculation using this method.

Table 3. J (x02bx107°) values for the mixed mode plate
(plane strain)

r/a 0.05 0.075 0.1 0..125 0.15 0.175 0.2 average

0/0
19 value

(e) 0.5874 0.5586 0.5838 0.5793 0.5718 0.5598 0.4143 0.5728
(p) 0.7739 0.7688 0.7556 0.7385 0.7183 0.6951 0.6691 0.7313

0.675 1.152 1.212 1.215 1.193 1.171 1.140 1.099 1.1689

0.7312 1.268 1.362 1.377 1.361 1.342 1.310 1.267 1.3267

0.7736 1.383 1.511 1.540 1.529 1513 1.482 1.436 1.4849

0.7854 1.403 1.536 1.569 1.560 1.545 1.515 1.469 1.5139

Note: when o/og = 0.5, J values have been calculated at the first step
(elastic) and the last step (plastic). Both groups are listed.

CONCLUSION

The collocation method and elasto-viscoplasstic theory is effective for
studying elasto-plastic problems, such as calculating J-integral, plastic
sone. When compared with FEM, this method has comparable accuracy, but
requires smaller computer capacity and less computational time. The method
i» quite versatile, and can be used to study other crack problems, with a
suitable change in displacement functions.
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Fig. 1 Calculation path of J-integral
for_center—cracked plate _ Fig. 2 Comparison of J values by CM and FEM

Fig. 3 Center slant cracked plate Fig. 4 The collocation points and plastic zone
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