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ABSTRACT

This paper discusses the application of the Finite Element
Iterative Method (FEIM) for the evaluation of the asymptotic
fields at interfaces of dissimilar materials with power law
hardening materials.
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INTRODUCTION

Renewed interest in the problem of interfacial cracks [1-4]
was realized due to recent advances in the development of
materials such as ceramics, organic composites, adhesives,
and micromechanics of failure in advanced materials.

The need for characterization of the asymptotic field at an
interface is fundamental for the development of the test and
design parameters. Little progress has been made in the
characterization of the asymptotic field at an interface of
elastic-plastic materials. For example, reference [5] gives
an elastic-plastic analysis of a material bonded to a rigid
substrate. The authors use dimensional analysis, and
conclude that the asymptotic field is non-separable.

The author has recently applied the Finite Element Iterative
Method (FEIM) to power law hardening materials and investi-
gated the form of the asymptotic field at an interface with
rigid substrate [10,11]. The results show that a separable
oscillatory solution similar to the elastic case [1,2], can
describe this field. The real part of the singularity is
close to the so-called HRR-field [6,7], and the imaginary
part depends weakly on the hardening power.
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APPLICATION OF THE FINITE ELEMENT ITERATIVE METHOD (FEIM) TO
POWER LAW HARDENING MATERIALS

The FEIM was originally developed for the solution of
singularity problems in elastic media [8,9]. It is based on
the fact that the asymptotic field can be expressed as a
separable function h(r) f(f). Where, for the stresses and
strains, h(r) is singular in r and f£(8) is a regular
function of 6.

Using this fact, a circular fan finite element mesh is

constructed, Figure 1, around the singularity. An iterative

scheme is then carried out by imposing displacements on the

outer boundary {u'g ; which are found from the resulting
~ b

displacements {,lé-g,} at an inner radius Ksin the previous
iteration. The rigid body motion is subtracted from {%Rs
and the resulting displacements are scaled by a factor _A_to

keep, e.g., the same COD. It was shown in references [8]
that FEIM reduces to:
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where [T] is the '(;,ransfer matrix between the boundary

n
displacements {‘A.L } and the inner ring displacements {%Rs}'
and n is the iteration number.

Depending on the form of h(r), the scalling factor A will
either reach a constant value or oscillate after many
iterations. After n iterations, convergence is judged by
the following condition:

n J k J, k >n
{%RSE = « {%ng + /3 {,‘;"ng <, n = Const. (2)

This condition is derivable from the fact that the FEIM is

based on the Rayleigh quotient and that after convergence,

the vector { 7 gcan be expressed in terms of the dominant
~~ RS

eigenfunction and its conjugate [9] i.e.,

u.n gf °<|5|+ &l,)S|
< Rs

where’)sl R x‘ are the first dominant eignefunction and its
~

(3)

conjugate, & and O<,are conjugate constants. In the case of
power law hardening materials, equation (1) is written in
terms of the tangent stiffness matrix of the circular domain
in Figure 1 and the incremental displacements, rather than
the elastic stiffness and the total displacements. Equation
(1) therefore becomes;
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[T(en]){s%n} = {84%.§
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i P i i he tangent
isplacements (WU’ )used in evaluating t J
zl:.eifgnegs matrix gfe %’btained by the substructurilng :flg
fully plastic domain. Using the same mesl:), of Figur ’
substructuring is continuously per:‘formed in the < zone
investigation of the asymptotic field as the pr:gcesis
approaches the crack tip. The substrugture num ﬁl; £ the
designated as and the process zone size over w‘Plc “
asymptotic field is evaluated is given by ‘Ep =( ‘/Rb)
where R is the substructure radius and Rb >

is the outer radius.

G
EVALUATION OF THE ASYMPTOTIC FIELD FOR POWER Lé?nﬂgggggg'rs
MATERIALS FOR A CRACK ON THE INTERFACE OF A RI

In references [10,11], we have shown that the FEIM %@Zezi;t{g
following form for the displacements of the_asympto i o
of an interface crack of a power law hardening materia

a rigid interface.

w (%) = RGP airD) S g | o
i =77

where E (©®) is a complex eigenfunction, i\ncz is exlla_xl;xlzied per
Ref [9]. The real part of the exponent "a" 1S S lgas {he
larger than the HRR value oE s‘l/r(‘1+n)){:nihzh:;ggzning he wer
s zone gets smaller. n", here, 1 r : ©

g?iﬁ: stressgin the Ramberg-Osgood str.ess—stral.n re%itsl(l)rl\]
ship. The imaginary part & 1is given 1n references éwer
and was shown to be weakly dependent on the"hirdeglangaz v
and the process zone size. Figure 2 gives "a an Jas
function of the process zone size vs. the hardening n".

Applying Eq. 2 to the displacement fields ie;ult}rt\gwg;orgound
consecutive process zones ;s My, "= O, 1,245 ,-«-,; oa

that once two process zones are fognd the rest o i

asymptotic field could be written in the recursive ;

x#* = (5+447) x*  , u = Re {f,(”}
X o w i (Bt ™)

S~ ~ atl ~

(6)
“ nding sub-
where X =,‘<‘;(RP) is given by Eq. 5 at the correspo a

hardenin
structure/u,. g and 12 are weekly dependent on the g
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power n amié is a scaling factor for the substructure. For

n=3%,%= 0.955“5, 7= 0-27/6 and n=5,%-0.988 and 7= 0.2362 -

Thus the full asymptotic field can be described by equations
5 and 6. The use of Eq.(6), leads to an error in Eg.(2) less
than 4% at the(/0 ')process zone, which could be due to the
large number of computations in the nonlinear substructuring
analysis.

The relationships between the stresses and strains are
obtained from analytical considerations of differentiating
of the displacements and the value of the J-integral which
is evaluated in the course of finding the tangent stiffness
matrix. The J-integral in all calculations of rigid
substrate was found to be constant. Following reference
[6], if one could show numerically that the strain energy
density around a circular contour to be given by

6 € —» £(8) (7)
A —
then a full description of the asymptotic field can be
obtained. Figures 3 and 4 give a plot of the strain energy

density multiplied by the radial distance versus the radial
distance. It is clear that the (dziéu Y ) is only a
function of @ once we get away from the crack tip. The
reason for the oscillations near the crack tip is that the
constant strain elements are not able to represent the
oscillatory asymptotic field of equation (5).

From equations (5, 6, and 7), the Ramberg-Osgood
stress-strain relationship and differentiating the

displacements, we get ) \ iE( ﬂ
a(Ry)-11 R -
€ij(Rp) = Re {(k.P"i "zP)T[' ’ ey (6)}

. —-a(rR )-iE(Rpﬁ S
6:('\,'(??) =?e3(klp+tk2p) T[ (%e, GZJ.(Q) (8b)
where 6,-','(9), G—J:j (9) are complex functions of 8 ,they are

found by the approach given in reference [9] rather than
differentiation.

(8a)

It should be noted here that equations (5-8) are
representative of the asymptotic field in a least square
sense. The degree of approximation depends on how Eg. 2 is
satisfied and the descritization errors encountered in the
finite element idealization for calculating the tangent
stiffness matrix and the transfer matrix [T].
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concLusIoNs

The Finite Element Iterative Method (FEIM) was shown to be
capable of dealing with nonlinear problems as well as linear
problems. The asymptotic field for interfacial cracks with
power law hardening materials was shown to be represented by
a weak oscillatory function, similar to the elastic case of
a crack at an interface. The real and imaginary parts
however depend weakly on the size of the process zone. The
full field can be written in a complex form of a recursive
formula, once two consecutive process zones are evaluated.

The strain energy density was shown to be singular of power
and behaves as 1/r and the J-Integral to be constant,
similar to the HRR-field. The FEIM leads to separable
asymptotic fields in the least square sense.
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Fig. la. Interface Crack.

Fig. 1b. Finite Element Mesh for Iterative Method.
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Fig. 2
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