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ABSTRACT

An energy criterion of equilibrium for a nonlinear elastic body
containing a slit is formulated. From this criterion statical
equations and equilibrium conditions on exterior and interior
boundaries are obtained. The theory is illustrated by a simple
example.
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AN ENERGY CRITERION

Let us consider a nonlinear elastic body containing a def8ct in
its natural state. The defect being modeled by a surface of
discontinuity will be called a slit. This slit is assumed to
settle on a smooth surface @, being bounded by a contour 3Q.The
body occupies a region V. =V\(QU3Q) of Euclidean three space,
having the exterior boungary 3V and the interior boundary QU3Q.
This natural configuration is choosen to be a reference configu-
ration. The Cartesian coordinates of a particle are denoted by
X, a=1,2,3. In a deformed state this particle will have the
Cartesian coordinates X given by

X=X, (X, X,,Xq) i=1,2,3 (1)
The coordinates x. run through a region v, occupied by the
deformed body. If~ the deformed state is equilibrium, then the
functions x.(X_) perform a one-to-one continuously differenti-
able mapping ffom V to v with the condition that detlaxi/ax |
>0, X E.VQ . Tracks of xi(x ) on two sides of Q draw thé s1¥t
surfac8s iH the deformed conf?guration. The problem is to find
an equilibrium criterion for the configuration x.(X_). For this
purpose, we formulate a variational principle:a "nefessary and
sufficient equilibrium condition for a configuration of a body
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containing a slit is that the variation of its energy at this
configuration should be more than or equal to zero in the class
of admissible configurations., A configuration will be called
admissible if its surface of discontinuity contains or coinci-
des with Q.

If the body does not contain the slit, then the above stated
variational principle in the class of the continuously differen
tiable configurations is reduced to the classical variational
principle of nonlinear elasticity (Gibbs,1876;Sedov,1968 and
Berdichevski,1983). The first step of generalization to frac-
ture mechanics was made by Griffith (Griffith,1920 and 1924).
For determining a critical length of an equilibrium slit (in a
case of plane deformations) Griffith differentiated the body
energy, expressed in terms of the slit length, and equated it
to zero. The further reduction of his ideas has been developed
in many publications (Cherepanov,1967;Rice,1968;Hutchinson,1968
Carlsson,1974;Bui,1977;Atluri and others,1984). The present
paper is aimed at showing the consequencies from the above
stated variational principle, particularly the statical equati-
ons and the equilibrium conditions on the exterior and interior
boundaries. The physical sense of the equilibrium condition on
the slit tip is that the module of the transversal energy flux
entering into it should be less than, or equal to, the doubled
surface energy density. In the linearized theory this condition
can be reduced to the well-known Cherepanov's condition (Chere-
panov,1967). It is important to note that the restriction for
the admissible configurations forbids the body to be back in
the state with the "healed" slit. Therefore the theory has
evident nonholonomicity.

BASIC EQUATIONS OF EQUILIBRIUM

In order to derive equilirium equations, according to the
energy criterion, one must define an energy functional of a
body on its arbitrary admissible configuration. Let a configu-
ration x,.(X_) have a surface of discontinuity I, which may
differ ftom? Q. By analogy with Griffith's theory we postulate
the following expression for the energy functional

Elx; (x)]= \f/U(xi,a,KB)dX +/2ydA +/p ®dX - ST, x.dA (2)
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Here V_.=V\(ZU2QJZL),9V=3V_ U3V, , , dX and dA denote the element of
z T . q :

volume™ and surface ared respectively, o is the mass density
of the material in its naturel state, U and vy are the internal
energy ver unit volume and the surface energy per unit area
(the last one is supposed to be constant). The tensor x, _=
9x./0X_ corresponds to the gradient of deformation, while&qk (X_)
, the flaterial characteristics. The potential of the body d
force is denoted by &(x.), and T, is the dead traction,prescri-
bed on the part 9V,, of “the exterior boundary. On the rest part
dV_ of the exterior boundary the values of x., are given x.=
r.%X ). Here and afterwards the comma is used to denote partial
difflrentiation and the repeated suffix to denote summation.

According to the formulated energy criterion, the configuration
xi(Xa) with the surface of discontinuity Q2 will be equilibrium
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if for all admissigle configurations y.=y.(X_,e) with surfaces
of discontinuity Q°, satisfying the rédstticlions @ 2Q, y.(X_,
0)=x.(X_) and y.(X_,e)=r,(X_) when X €3V _, we have the 1 a

ineqlalfty 1a 1oa a X

d
6E = 3glezp Ely; (X r8)] 20 (3)
PFrom the variational inequality (3), being held for all

admissible configurations, one can show that the equilibrium
configuration should satisfy the following relations

Tai,a+ poFi =0 , Tai= E)U/Z)xi’a in VQ (4)
xi=ri(xa) on avx ¥ TaiNa=Ti on avT (5)
31 N0 on ana® T;iNaxi’a=O on oF (6)
TI N ng /5|na = T_,N.n /E]ea =-p<0 on ot (7)
la, 1= /JaJa—J’; <2y on 30 (8)

Here T_. is the Piola stress tensor, F.,=-3%/3x., is the body
force per unit mass, the indexes +,- indicate the limit values
of quantities on two sides of Q, N_ is the outward unit normal
on surfaces (on the interior surfa@eq it is in the direction

of +). Let the sub-areas of Q be denote by " and Q" , whose
points after deformation will be in contact with each other. If
the surface & is referred to a curvilinear two-coordinates

system, thep the contact means that x.(n_ )=x. (6 ), where
'\FQ+ 8,€Q, a=1,2. In t?e boundary cénd¥tiond (8) and (7)
Xi,a —axi/anOL , a—det[aas, i amB=xa'O‘xa'B ; xa'u=axa/ana . The

vector n, is the common unit normal on two deformed contact
surfaces™in the direction of +. The second condition of (6)
expresses the fact, that the friction force between the contact
surfaces is not taken into account. Lastly, in the condition
(8) J_ is the vector of the energy flux entering into the slit
tip (“Cherepanov,1967;Rice,1968) to be calculated by

J_ = lim S (=T

& Irljso T b
where the closed contour T',settling on the transversal to 3Q
plane surface, surrounds the point X_ on 30 and shrinks to it
when the contour length |I'| tends to? zero. The vector «, is
the unit outward normal on I' , J, denotes the component ~J_t
where Pg is the tangential vectof on 3Q. a

e, * UKa)dS (9)

<X
bi"i,a

aI

The relations (4)-(8) compose the system of statical equations
and boundary conditions, which must be satisfied by any equili-
brium configuration. It is of interest to note that the
condition (8) is separated from the rest of the relations.
Therefore in practice one can solve firstly the system (4)-(7)
to find the deformed configuration x,(X_) and the stress field
Tg} , and then, by (9),calculate Ja 4na? verify the inequality
(

As an illustration consider a simple example of an anti-plane
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shear of an infinite slab containing a slit, when it is defor-
med at infinity to a state of simple shear (Knowles,1977) (Fig.

1) AX

(/Xp X2)

Figure 4.

The material of the slab is supposed to be homogeneous, incom-
pressible and neo-Hookean, for which

=L - =
U 5 (xi,axi,a 3) » detlxi'a| 1 (10)

where p > O is the (constant) shear modulus. For the exterior

boundary condition instead of (5) one has to give the asympto-

tic field of simple shear at infinity

- x B = 5 x, = Xy+kX,+o(1) as x2+%2 4w (11)

xg 1 2 2 3 3 R

In the case to be considered here, the contact of the slit
surfaces takes place and Q= Q7= , where Q={X_, X2=O,|Xl|<a}.

But one can show that p=0 on @ , so the slit surface are

traction-free. Not going into problem solution details (Knowles

,1977), one demonstrates the asymptotic behaviour of X5 and T
near the slit tip

= = = 2ar sin&
X Xl ’ x2 X2 , x3 X3 + k J2ar 51n2

1
= = ar sind = = 2arc’ 5
Tl3—T31_ kay/2ar siny T23 T32 kay/2ar cosy (12)
T _ =0 ,ap=l,2 , T530

af
where r,p are polar coordinates at the right slit tip (Fig.l).
Using the formulae (9),(12) one can easily calculate Ja. At
the right slit tip Ty is given by

1.2 -1 =
Jl—-ipk anm o J2—33—0 (13)

From (8) and (13) one can conclude that only slabs, containing
a slit of length less than or equal to 8y/(uk“m) can be in the

state of equilibrium under an anti-plane shear.
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